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Abstract— Interactive Reinforcement Learning (IRL) uses
human input to improve learning speed and enable learning
in more complex environments. Human action advice is here
one of the input channels preferred by human users. However,
many existing IRL approaches do not explicitly consider the
possibility of inaccurate human action advice. Moreover, most
approaches that account for inaccurate advice compute trust
in human action advice independent of a state. This can lead
to problems in practical cases, where human input might be
inaccurate only in some states while it is still useful in others. To
this end, we propose a novel algorithm that can handle state-
dependent unreliable human action advice in IRL. Here, we
combine three potential indicator signals for unreliable advice,
i.e. consistency of advice, retrospective optimality of advice, and
behavioral cues that hint at human uncertainty. We evaluate our
method in a simulated gridworld and in robotic sorting tasks
with 28 subjects. We show that our method outperforms a state-
independent baseline and analyze occurrences of behavioral
cues related to unreliable advice.

I. INTRODUCTION

Interactive Reinforcement Learning (IRL) [1], [2] provides
a potentially powerful approach to enable self-improvement
of future humanoid robots through direct interactions with
their environment and human teachers. In contrast to classic
Reinforcement Learning (RL) [3], in IRL human feedback
and advice can help to increase learning speed, improve
sampling efficiency, and enable learning in more complex
environments by exploiting human prior knowledge [4].
However, one limitation of many existing IRL approaches is
the assumption that human input is always useful and correct
[4]. In reality, human teachers might not always be able to
provide such idealized input and human feedback or action
advice might be partially incorrect for specific states, e.g.
when the human teacher has a limited understanding of parts
of a task or insufficient knowledge of an underlying state [5],
[6]. A crucial step toward real-world applicability of IRL is
therefore the development of algorithms that are capable to
detect and handle potentially unreliable human input.

In this paper, we introduce a new IRL algorithm for
learning from unreliable action advice (LUNAA), where we
combine three different indicators for potentially inaccurate
human input. Specifically, LUNAA computes the trustworthi-
ness of action advice based on the consistency of the history
of advice in a particular state, the retrospective optimality
of human advice given the overall received environmental
rewards, and implicit behavioral cues for human uncertainty,
e.g. human response times and facial dynamics. In contrast
to the majority of related approaches [6]–[8], we compute
the trust in human action advice state-dependently. This
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Fig. 1: We propose a new IRL algorithm that combines
three indicators, i.e. consistency, retrospective optimality, and
behavioral cues, into a measure for state-dependent trust to
handle potentially unreliable action advice.

allows LUNAA to only discard inaccurate action advice for
particular states, while still profiting from correct human
input in other states. The use of state-dependent trust has
also been proposed for human input in the form of evaluative
feedback before in [9], however, in our approach we apply
it to human action advice, which was shown to be one of
the preferred human input sources in IRL [6], [10].

Experiments in a grid world and a robotic sorting task
show advantages of our approach over a state-independent
decrease of trust in advice, as it was proposed e.g. in [8]
and [6]. Additionally, we evaluate response time and facial
dynamics as behavioral cues for insecure and potentially in-
accurate advice in robotic sorting tasks with 28 participants.

II. RELATED WORK

There are several ways of incorporating human input into
RL [4]. One main difference in existing approaches is the
form in which humans can provide input, e.g. as evaluative
feedback after action execution [11], [12] or proactive guid-
ance signals in form of action advice [13]. However, the
majority of IRL approaches assume the human input to be
useful and correct [4], which may not always be the case
in real applications [5], [6], [14]. Some approaches account
for false sensor detection of human input but assume the
underlying human input to be optimal [15]–[17]. Only a few
works try to explicitly model strategies behind human input
[14], [18], [19] or consider cases where the human input
itself might be inaccurate or suboptimal [6], [8], [20]–[23].

Griffith et al. [7] proposed the ADVICE algorithm where
they follow a Bayesian approach to estimate a consistency
parameter for human feedback. However, their consistency



parameter is estimated over the whole state space and can
not account for state-dependent errors in human feedback
signals. Other works [6], [8], [24] introduced heuristic time-
dependently decreasing trust in human feedback, following
the assumption that over time the policy starts to generate
better output. However, these approaches also make no
difference in trust for human input over different states.

The use of ensembles of experts as feedback sources
to compute the reliability of human inputs has also been
proposed [21], [23]. However, these approaches are limited
by the availability of multiple human teachers and also do not
consider state-dependent inaccuracies of specific teachers.
Other approaches compute trust in a learned policy depend-
ing on the current DQN loss function and compare advice
and learned Q-values to account for inconsistencies, combine
a policy learned from human feedback with the agent’s policy
based on the match of human feedback with multiple stored
policies from the environmental reward function [22], or
use an Expectation-Maximization approach for learning from
uncertain input [25]. Learning from inattentive teachers [5]
and explicit considerations for state-dependent inaccuracies
have been proposed by [9] and [5]. In particular, [5] discusses
that the assumptions of underlying patterns to incorrect
human input might depend on misunderstandings of tasks
or robot capabilities and that it is advantageous for an agent
to learn to distinguish such patterns instead of trusting all
human feedback equally. In the REPaIR algorithm [9], they
propose an approach that can learn whether to keep, invert,
or discard human feedback given in binary form, dependent
on the overall achieved environmental reward for specific
state-action pairs. Our indicator retro-optimality for human
action advice follows this basic idea of the REPaIR approach.
However, while [9] is designed for evaluative feedback sig-
nals only, our approach focuses on handling state-dependent
inaccuracies in human action advice signals. We focus here
on action advice since recent studies have shown that humans
prefer to not only give evaluative feedback but also want
to give active guidance [6], [10]. In contrast to the existing
approaches that used comparison with environmental rewards
[9], quality of the current policy [20], or consistency of
human input [7], [20], [25] as indicators of trust, we propose
a third indicating source to help an agent to detect potentially
inaccurate human advice. Our use of behavioral models as
an additional indicator is inspired by findings that humans
also learn over time how to perceive and detect signals for
uncertainty in other humans [26]. Human uncertainty occurs
in different forms [27] and it was shown before in human-
computer interaction literature that it is possible to detect
uncertain input, confusion, or lies of a human user from
behavioral and physiological signals [28]–[31]. In this paper,
we explore facial dynamics and response times as behavioral
cues. Facial dynamics have been explored as rewards in IRL
[32] but not as an indication of potentially wrong input. We
also found no work that explicitly considers response times
for state-dependent trust in advice for IRL.

III. LEARNING FROM UNRELIABLE ACTION ADVICE

In this section, we introduce LUNAA, a new IRL algo-
rithm that learns from unreliable human action advice. We

model the problem as a Markov Decision Process (MDP),
where for action a in a state s, the agent transitions to the
next state s′ and receives a reward r. The goal is to learn an
optimal policy π∗(s) that maximizes the expected cumulative
reward. For the experiments in this paper, we use tabular Q-
learning and update the Q-function according to

Q(s, a)← Q(s, a)+α(r+γmax
a′

Q(s′, a′)−Q(s, a)), (1)

where α is the learning rate and γ the discount factor. Here,
we used γ = 0.98 and a fixed learning rate α = 0.1.

In addition, we learn a model of human action advice
H(s, a) to predict which action the human would most likely
suggest for a given state s. Such a learned model of human
action advice can be beneficial since human input might be
sparse and humans tend to give less advice over time [33].
A human advice module is comparable to learning a model
for human reward based on human feedback as proposed in
[2] and has also been suggested in [6]. However, under the
assumption that human advice ah can be partially incorrect,
H(s, a) can deviate from the optimal policy π∗(s) for the
given reward function R. Therefore, we additionally define
a function th(s, ah) that assigns a trust in H(s, a) in the
range [0, 1] for each state and action. In contrast to prior
work [6]–[8], we propose a state-dependent formulation for
trust. Similar to Kessler Faulkner et al. [9], we assume that
the correctness of human action advice often depends on
the current state rather than simply improving or worsening
over time. In particular, a human might only be inaccurate
in some states due to partly misunderstanding a task, while
still being able to provide useful advice in other states.

In the following, we explain three indicators that we
use to compute the state-dependent trust, i.e. consistency
c(s, ah) in Section III-A, retrospective optimality o(s, ah)
in Section III-B, and behavioral cues b(s, ah) in Section III-
C. In Section III-D we show how we learn the human advice
module and in Section III-E we explain how to use the state-
dependent trust to combine the learned advice module and
the Q-function. Algorithm 1 summarizes the approach.

A. Consistency
One indicator to detect unreliable human input is the

consistency of input over time [34]. To detect states with
inconsistent action advice, we store the last NΦ advised ac-
tions ah for each state s in a state-specific advice history Φs.
Based on this advice history we then compute a consistency
factor c(s, ah) for each state and action pair

c(s, ah) = max(0, ((Nah
/NΦ)− 0.5)/0.5), (2)

where Nah
is the number of occurrences of the advised

action ah in the action history Φ(s). For the experiments in
this paper, we limit the maximum number of stored actions in
the history of a state to 10. Whenever this limit is exceeded
for a state we discard the oldest stored action from Φ(s).

B. Retrospective Optimality
As a second indicator for potentially unreliable advice we

propose retrospective optimality (retro-optimality), that is if
human advice leads to one of the lower seen cumulative
rewards, it is more likely suboptimal. Similarly, Kessler



Algorithm 1 LUNAA

Require: max number of episode steps M , max episodes E
1: init Q-table Q[s, a]=0 ∀s, a if a possible in s, else −∞
2: init visits per state v[s] = 0 ∀s, episode counter e = 0
3: init γ = 0.98, ε = 0.1, α = 0.1
4: while e < max number episodes E do
5: s = random init state, episode steps counter i = 0
6: while episode not finished and i < M do
7: ξe = [] empty list, rξ = 0, v[s] = v[s] + 1
8: if action advice {ah, bi(s, ah)} given then
9: store s, ah into ξe

10: Update H(s, a), b(s, ah), c(s, ah), Eq.(9), (8), (2)
11: decide if to reject ah based on Eq.(14)
12: else
13: ah = argmaxa[H(s, a)]
14: Compute th(s, ah), tq , β(s), Eq.(10), (11), (12)
15: p sample from uniform distribution
16: if p < (1− β(s)) then
17: a = ah
18: else
19: a = choose ε-greedy action a from Q[s, a]
20: end if
21: end if
22: execute action a, get reward r and next state s′

23: Q[s, a] = Q[s, a] +α(r+ γmaxaQ[s′, a]−Q[s, a])
24: s = s′, rξ + r, i = i+ 1,
25: end while
26: Rmax[(s, ah)] = rξ
27: for all (sξ, aξ) ∈ ξe do
28: Update o(sξ, aξ) , Eq.(3)
29: end for
30: e = e+ 1
31: end while

Faulkner et al. [9] use this intuition to estimate corrections to
partially incorrect feedback over time. Here, we adapt their
approach and computation of trust for action advice instead
of feedback. During each episode, we save the state trajectory
ξ together with the provided action advice ah. At the end of
each episode, the cumulative reward Rξ is stored. For (s, ah),
if a higher Rξ has not been seen, we save it as the highest
reward for this state-action pair: Rmax[(s, ah)] = rξ. Each
episode the retro-optimality o(s, ah) is updated as

o(s, ah) =
Rmax[(s, ah)]−min(Rmax)

max(Rmax)−min(Rmax)
(3)

Retro-optimality can here be beneficial as soon as the agent
has experienced ways to achieve a higher reward than when
just following the current human action advice.

C. Behavioral Cues
As the third indicator for unreliable action advice, we pro-

pose the use of behavioral cues. This is inspired by the fact
that also humans learn to detect uncertainty in other humans
based on behavioral signals [26]. In comparison to consis-
tency and retro-optimality, behavioral cues can potentially
help to identify incorrect advice from the very first episode.
Behavioral cues may help when incorrect advice correlates
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Fig. 2: Human advice can be correct or incorrect and given
with a high or low level of confidence. Behavioral cues may
help when incorrect advice correlates with uncertainty.
with human uncertainty. However, if there is a mismatch
between the level of confidence and the correctness of the
advice, behavioral cues might lead to a rejection of correct
advice or acceptance of wrong advice (Fig. 2). In this case,
the combination with additional indicators, i.e. inconsistency
and retro-optimality, can be particularly beneficial. Different
physiological and behavioral signals have been shown to
relate to behavioral uncertainty in humans [28]–[31]. We
focus here on response times and facial dynamics.

1) Response Time: Evidence suggests that a higher re-
sponse time can indicate a higher uncertainty level of a user
[28]. The response time RT [ms] is here defined as the time
between the presentation of all options of action advice to
the user and the selection of one action ah. Based on RT , we
compute a certainty indicator rt(s, ah) between 1 (certain)
and 0 (uncertain) for a state s and action advice ah as

rt(s, ah) = 1−min(1,max(0,
RT (s, ah)−RTmin

RTmax −RTmin
)) (4)

where RTmin and RTmax are upper and lower thresholds on
the response times.

2) Facial Behaviors: To estimate a human’s level of
uncertainty for given advice from facial behaviors, we use
OpenFace [35] to extract Action Units (AUs), which encode
regional facial movements and their intensities [36]. We
consider the time window between enabling the advice
GUI and input of the user at time t. We compute the
average sum of absolute differences between the n frames
for the subset of AUs recognized by OpenFace FB =
1
n

∑
AUs

∑t
i=t−n |AUi −AUi+1|. We hereby excluded AUs

mostly related to blinking (AU05, AU07, AU45) after pilot
data analysis. We compute a facial certainty indicator

f(s, ah) = 1−min(1,max(0,
FB(s, ah)− FBmin

FBmax − FBmin
)),

(5)

where FBmin and FBmax are thresholds between 0 and 1.
3) Combined behavioral indicator: We compare Linear

Opinion Pool [37] with equal weights (LOP) and Indepen-
dent Opinion Pool [38] (IOP) to combine behavioral cues

bLOP
i (s, ah) = 0.5 · (rti(s, ah) + fi(s, ah)) (6)

bIOP
i (s, ah) ∝ rti(s, ah) · fi(s, ah). (7)

In Section IV-B.2 we discuss the effects of these different
combinations. Since behavioral signals for an action in a state
might vary over time we compute a weighted average

b(s, ah)← (1− αb)b(s, ah) + αbbi(s, ah), (8)



where αb can be seen as a learning rate and is set to 1/NΦ

for the experiments in this paper where NΦ is the number
of seen action advice with a maximum of 10.

D. Human-Advice-Module
As also proposed in [6], we learn a human advice module

H(s, ah) to account for the fact that a human might only
provide sparse action advice or decrease the amount of
advice in the same state over time. For the experiments in
this paper, we use a simplified function approximator similar
to a tabular Q-function. Here, we initialize all entries with
zero, and whenever an action ah is advised in a state s with
behavioral indicator behavioral bi(s, ah) we update H(s, ah)

H(s, ah) = H(s, ah) + min(0.1, bi(s, ah)), (9)

that gives more weight to advice with higher certainty. For
using LUNAA without behavioral cues we set bi(s, ah) = 1.

E. State-dependent Action Selection Module
In Sections III-A-III-C we proposed three indicators for

unreliable human advice. We combine all three indicators
into an estimate of trust into human advice th(s, ah)

th(s, ah) = min(c(s, ah), o(s, ah), b(s, ah)). (10)

This is a conservative combination, where we always distrust
human advice if one of the indicators considers it distrustful.
In addition, we compute the trust in the agent’s own policy,
similar as in [6], [20]. This we refer to as self-confidence
hereafter. While th(s, ah) is computed state-dependent the
self-confidence is state-independent and increases over time

teq = min(1.0,max(0.0, e− etq,start)mtq ), (11)

where teq is the agent’s self-confidence in episode e, and
etq,start and mtq denote starting point and slope of increase.

We use a combination of the state-dependent trust in
human advice and the self-confidence for two things. In
cases when no human input is provided, we use th and tq
to combine the H(s, a) and Q(s, a) for the agent’s action
selection policy. Motivated by [24], we use a shared control
approach. We first compute âh,max = argmaxa H(s, a) and
if multiple actions maximize H(s, a), we decide for the one
with maximal th(s, âh,max). Then we compute

β(s) = max((1.0− th(s, ah,max)), t
e
q), (12)

as a state-dependent combination parameter for the shared
control approach. Here, considering teq ensures that even if
none of the indicators (Sections III-A-III-C) recognizes an
unreliable advice after a higher number of episodes the policy
still takes over learning due to increasing trust in the agent’s
own Q-function. We use β(s) as a probability to switch
between the action computed by the human advice module
and an ε-greedy policy based on the agents Q-function,
except for states where no human advice has been given so
far (H(s, aj) == 0 ∀aj). Then we only consider the policy
based on the Q-function

if not H(s, aj) == 0 ∀aj ,
P (aπ = argmax

a
[H(s, a)]) = β(s),

else: P (aπ = argmax
a

[Q(s, a)]) = 1− ε(s),

P (aπ = random action) = ε(s),

(13)

where ε = 1/
√

v(s) is the exploration parameter of an
epsilon greedy policy based on number of state visits v(s).

Second, we use the computed trust parameters in the case
when a human actively gives action advice to give the agent
the option to question and reject human advice

preject = max((1.0− th(s, ah), tq), (14)
where with the probability preject human advice ah gets
rejected and the agent instead follows its learned policy.

IV. EXPERIMENTAL EVALUATION

We present experiments in a grid world scenario (Sec. IV-
A) and in robotic sorting tasks with 28 human partici-
pants (Sec. IV-B). We compare LUNAA against a state-
independent linear increase of the agent’s self-confidence
(T-SC) as it was proposed e.g. in [6], [24]. Moreover, in
the robotic tasks, we analyze how task-related uncertainties
influence response times and facial dynamics of participants.

A. Gridworld with Simulated Human Input
Fig. 3(a) shows the used grid world with 4x5 states

and four actions: up, down, left, and right. An episode
ends if the agent reaches the goal (r=100), goes into a fire
(r=-100), or exceeds the maximum number of 15 steps
(r=0). In all states, which do not end the episode, the agent
receives a reward of r=-1. Advice is given throughout the
first 20 episodes. To simulate partially incorrect advice, the
agent receives correct, useful feedback at all states except
the purple state. In the purple state, we either simulate
inconsistent wrong advice that is a random choice among all
sub-optimal actions (’up’, ’down’, ’left’) or consistent wrong
advice that is ’up’, to analyze the interplay of the chosen
three indicators for different types of advice. We compare
our method with a state-independent linear increase over
time for a self-confidence (T-SC) as proposed in [6], [24].
Fig. 3(b) shows that when using a human advice module
useful human advice speeds up learning (cyan), whereas for
partially incorrect inconsistent advice learning fails (orange).
Therefore, being able to distinguish reliable and unreliable
human advice could be beneficial in this scenario. Fig. 4(a)
shows that T-SC can speed up learning since over time the
learned human advice function or human input itself can be
questioned. However, if this self-confidence increases too
early useful advice is not fully exploited and a later increase
may result in following partially incorrect advice for a
longer time. To tackle these problems, in contrast to T-SC in
our approach (LUNAA) we introduce a state-dependent trust
in human advice. Fig. 3(c) visualizes the results with mean
and standard deviation over 50 evaluation runs and 100
experiments. A Kruskal Wallis test (χ2 = 193.7, p < 0.001)
and posthoc Conover’s show that for inconsistent wrong
advice for the combination of our indicators consistency and
retro-optimality (LUNAA-CR), we converge significantly
faster than T-SC (p < 0.001) and policy only without human
advice (p < 0.001). For consistent wrong advice, LUNAA-
CR shows no discernible advantage over T-SC in learning
(Fig. 3(d)). In such cases, we consider behavioral cues
as additional indicators for human uncertainty particularly
useful. We simulate behavioral certainty with b ∼ [1.0, 0.8]
for certain advice and b ∼ [0.0, 0.2] for uncertain/incorrect
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Fig. 3: (a) Gridworld scenario, (b) influence of optimal (cyan) versus partially incorrect advice (orange), (c) for inconsistent
wrong advice LUNAA-CR learns significantly faster than T-SC, (d) benefit of LUNAA-BCR for consistent wrong advice. All
plots show mean and standard deviation over 50 evaluation runs and 100 experiments

advice. The probability of false positives and negatives is
set to 0.05. We compare our approach including behavioral
models (LUNAA-BCR) against LUNAA-CR and T-SC.
A Kruskal Wallis test (χ2 = 239.3, p < 0.001) and
posthoc Conover’s show that LUNAA-BCR converges
significantly faster than T-SC (p < 0.001), LUNAA-CR
(p < 0.001), and policy only (p < 0.001). T-SC and
LUNAA-CR show no significant differences in convergence
for consistent wrong advice (p = 0.605) and converge
significantly slower than policy only (p < 0.001). In Fig. 4
we test the robustness of (a) T-SC and (b) LUNAA-BCR
to variations in self-confidence parameters. The self-
confidences were optimized separately for both methods
before including variations. The plots reveal that T-SC
is more sensitive to variations. LUNAA-BCR converges
faster than policy only for all tested parametrizations. In
Fig. 4(c) we evaluate the influence of inaccurate behavioral
certainty estimations on learning with LUNAA-BCR. Up
to a probability P (uncertain|ah is correct) = 0.5 (false
negative), LUNAA-BCR converges faster than policy only.
For a probability of P (certain|ah is incorrect) = 0.5 (false
positive), LUNAA-CR is slower than learning without advice.

B. Robotic Sorting Tasks with Real Human Input
In the literature, we found a lack of experiments that

investigate the occurrence of partially incorrect advice with
real human subjects in IRL [6]. However, such experiments
are crucial to better understand how to detect and handle such
advice in real robotic tasks. We therefore conducted robotic
experiments with 28 subjects (18 male, 10 female, age 18-
35), where we investigate state-dependency of correctness
in human advice and the occurrence of behavioral cues
which could indicate state-dependent human uncertainty. The
participants mostly reported a low level of prior experience
with robots, in particular, 16 persons never or only once had
contact with robots before and only two subjects reported
more than 20 prior encounters. The experiments were ap-
proved by Ethikkommission of TU Darmstadt on 07/21/2021.
For each subject, the experiment is divided into three parts
(Ex.1A, Ex.1B, Ex.2), which differ in the extent to which
subjects can assess their uncertainty about the correctness
of given advice. In all experiments, the robot should sort
objects correctly into boxes. The sorting criterion is related

to the objects’ weights (HIGH or LOW) which can not be
accessed by the human but only by the robot’s sensors in
the moment when it lifts the objects. The reward is 10 if an
object is sorted correctly and −10 if it is sorted incorrectly.
The actions are GO-TO-OBJECT, GRASP, DROP, GO-TO-
BOX-X. The state is defined by the weight on the robotic
arm (EMPTY, HIGH, or LOW) and its gripper position (AT-
HOME, AT-OBJECT, AT-BOX-X), resulting in 12 states for
Ex.1A&B and 15 states for Ex.2. Advice is given over a
tablet with a GUI shown in Fig. 5(c) and experimental setups
for Ex1.A&B and Ex2. are shown in Fig. 5 (a) and (b).

1) Comparison against T-SC for Ex.1A&B: In Ex.1A&B
the participants were told to help a robot sort objects colored
blue or orange (Fig. 5 (a)). However, object colors did not
correspond to the sorting criterion, i.e. object weights. Since
the boxes had colored labels matching object colors and the
sorting criterion was not communicated, the participants were
likely influenced to get a false prior. This results in partially
wrong advice (sorting objects in the wrong box), while still
being able to provide useful advice for general task structure,
e.g. first go to object then grasp. In Ex.1A, the participants
did not receive feedback if an object was sorted correctly
and are therefore expected to stick to their false prior about
the sorting criterion. In Ex.1B, subjects received feedback
after each episode and might therefore start to question their
assumed sorting criterion. Fig. 6(a) shows that as intended
these experimental settings resulted in partially incorrect
human advice. In particular, the correctness of advice is
state-dependent, where in states where they had to decide
about which box to sort in (sorting) subjects gave a higher
proportion of incorrect advice compared to states where they
just advised about task-structure actions, i.e. go-to-object,
grasp (non-sorting). Fig. 5(e) shows the comparison between
LUNAA-CR and T-SC in Ex.1A&B. The plot shows the
mean and standard deviation of the average reward for 50
evaluation runs and 50 experiments with different random
seeds where we use the recorded human advice from Ex.1A
and Ex.1B in the first 8 episodes and then continue learning
with shared control policy between Q(s, a) and H(s, a). The
use of consistency and retro-optimality as indicators for state-
dependent incorrect advice speeds up learning significantly
compared to using a time-dependent self-confidence only
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(Wilcoxon Signed Rank (WSR), p < 0.001, Mdn = 4.6
(LUNAA-CR) vs 5.3 (T-SC)) and using policy only (Mann-
Whitney-U, p < 0.001).

2) Analysis for behavioral cues: In Ex. 1A&B LUNAA-
CR, i.e. the indicators consistency and retro-optimality al-
ready showed advantages over the T-SC baseline (Sec. IV-
B.1). As demonstrated in the gridworld we argue that using
behavioral cues as an additional indicator could increase
the benefit of LUNAA even further. To better understand
occurrences of such behavioral cues and their relation with
partially wrong human advice we provide here a pilot analy-
sis for response times and facial dynamics as behavioral cues
in Ex.1A&B and in an additional experiment, i.e. Ex.2.

Compared to Ex.1, in Ex.2 the underlying sorting criterion
was more openly communicated to the subjects. They were
briefed to assist the robot to sort objects in 3 boxes (la-
beled light, medium, heavy) according to weight (Fig. 5(b)).
However, the exact thresholds for e.g. light or heavy were
not communicated. The objects were filled with different
material visible to the subjects, such that they could use their
prior knowledge to get a sorting intuition. In a familiarization
phase, the human advised two objects filled fully with
feathers (light) and two filled fully with stones (heavy). This
was followed by three experiment runs with six episodes,
each. In each run, four objects were objects previously seen
in the familiarization phase and two unknown objects filled

with either a combination of stones and feathers or a varying
number of screws, or a different amount of stones. Since
those objects were not seen before, humans were expected
to be less certain about where to sort them. In addition, the
threshold was designed to potentially contradict their first
intuitions about unknown objects resulting in state-dependent
partially wrong advice (Fig 6(a)). In contrast to Ex.1, based
on the state-dependent trust the robot could now also reject
the advice and perform another action. At the end of each
episode, the human received feedback on whether the task
was successfully solved. Compared to Ex.1, in Ex.2 we
expected subjects to be able to better assess their level of
uncertainty for a particular state and object.

Over all robotic experiments, we evaluate if humans show
uncertainty connected to unreliable advice and how this
reflects in their response time (RT) and facial dynamics
(FB) (Section III-C). In Fig. 6(d-f), we analyze RT and the
resulting certainty indicator rt (Eq. 4) over 28 subjects for
Ex.1A&B and Ex.2. In Fig. 6(d), we compare RT for advice
directly related to sorting (purple) to non-sorting advice
(orange: grasp, go-object). In Ex.1A the subjects did not
receive feedback, so we expected them to be certain about
sorting the objects according to color, despite being partially
wrong. RT for sorting actions is here significantly lower
(WSR, z = 2.69, p < 0.01) than for non-sorting, but with
only a small difference in absolute values (Mdn 1.81s (non-
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Fig. 6: We compare the occurrence of state-dependent incorrect advice (a), response times (d), and facial dynamics (g) for
Ex.1A, Ex.1B, and Ex.2 for non-sorting advice (orange: grasp, go-to-object) vs. advice related to sorting (purple). We evaluate
response times (d-f) and facial dynamics (g-i) and show median (orange), mean (dotted green line), lower/upper quartiles,
and outliers. (e-f) and (h-i) compare non-sorting advice (blue) to choosing boxes for objects known from familiarization
(green), or unknown objects (red). We compare a combination of rt and f into b-scores with LOP (b) and IOP (c).

sorting) vs 1.60s (sorting)). In Ex.1B participants received
feedback at the end of each episode and might question
their first assumed sorting criterion, potentially resulting in
more behavioral uncertainty. RTs are significantly higher
for sorting actions compared to non-sorting actions (WSR,
z = 2.23, p < 0.05). In Ex.2 the sorting criterion was
communicated to the participants such that they could use
their prior knowledge about object weights. Here, RTs are
significantly higher for sorting advice on unknown objects
(red, Mdn = 2.56s) compared to non-sorting advice (orange,
Mdn = 1.27s) (WSR, z = 4.60, p < 0.001). In Fig. 6(e) RT
is shown for Ex.2 over all subjects for each action advice.
We distinguish between non-sorting advice, sorting advice
for known objects, and unknown objects. We expect subjects
to be less certain when sorting unknown objects compared
to objects known from the familiarization phase and non-
sorting advice. RTs are significantly lower for sorting advice
on known objects compared to non-sorting advice (Mdn =
1.17s sorting known vs. 1.27s non-sorting, WSR, z = 2.71,
p < 0.01). In Fig. 6(f), we show rt (Eq. (4)) with RTmin

and RTmax set to mean and maximum RT over all subjects.
rt values are significantly lower for sorting unknown objects
than for known objects (WSR, z = 3.94, p < 0.001, Mdn =
0.83 (unknown) vs. 1.0 (known)) and for non-sorting advice
(WSR, z = 4.62, p < 0.001, Mdn = 1.0 (non-sorting)). In
summary, in Ex.2 the calculated rt-indicator can distinguish
between certain and uncertain advice. Even tough, a higher
uncertainty can not always be equated with incorrect advice,
it can avoid following incorrect advice for unknown objects.

In Fig. 6(g-i), we compare FB for Ex.1A&B and Ex.2.

We excluded 7 bearded subjects since facial hair drastically
reduced the quality of extracted AUs. Even though Fig. 6(g)
shows a trend of a higher FB for sorting advice over non-
sorting in Ex.1B, WSR indicates no significant differences.
Fig. 6(h) shows FB for Ex.2, comparing non-sorting and
sorting advice for known and unknown objects. There is a
significant difference between sorting known (green, Mdn =
0.02) and unknown objects (red, Mdn = 0.03), (WSR, z =
2.49, p < 0.05). In Fig. 6(i), we calculate f (Eq. (5)) with
FBmin = 0.1 and FBmax set to maximum FB over all sub-
jects. For this calculation, most advice would be considered
as certain. Results show higher f -values for sorting unknown
objects for 9 subjects but do not allow to clearly distinguish
certain from uncertain advice. Nevertheless, visual inspec-
tion of the recordings suggests a connection between facial
dynamics and uncertainty (Fig. 5(d)). A deeper analysis
of relevant AUs and refined calculation of FB is needed
to further evaluate the suitability of facial dynamics as an
indicator for incorrect advice. We compare IOP and LOP
(Fig. 6(b-c)) as two exemplary methods to combine rt and f
to b-scores (Eq. (8)). IOP often misclassified uncertain advice
as b = 1.0. LOP is more robust and has significantly lower
b for sorting unknown compared to known (WSR, z = 3.11,
p < 0.005, Mdn = 0.90 (unknown), 1.0 (known)) and non-
sorting (WSR, z = 4.01, p < 0.001, Mdn = 1.0 (non-
sorting)).

V. CONCLUSION AND OUTLOOK

We introduced LUNAA, a new algorithm to learn from
unreliable action advice in IRL. In contrast to related ap-
proaches, we use a state-dependent trust in human action



advice based on three indicators, i.e. consistency, retro-
spective optimality, and behavioral cues. Evaluations in a
gridworld scenario and a robotic sorting task showed that
for partially incorrect advice LUNAA outperforms a state-
independent computation of trust in human advice as pro-
posed in related works. In the gridworld setting, results
demonstrate that behavioral cues can be particularly use-
ful in the case of consistent wrong advice. Therefore, we
additionally evaluated response times and facial dynamics
as two examples of behavioral cues in three robotic tasks
with 28 participants. In these experiments, response times
allowed to clearly distinguish between certain and uncer-
tain human advice. Facial dynamics showed promising first
results, however need further investigation. In future work,
we plan to investigate occurrences of behavioral cues with
more participants in a larger variety of tasks to develop
a deeper understanding of correlations between human be-
havioral uncertainty and partially wrong advice and explore
differences between individuals. Here, we consider verbal
articulation [26] as a promising additional signal. Moreover,
we plan to explore how to replace the currently state-
independent self-confidence in the agent’s Q-function by a
state-dependent approach, e.g. using Bayesian RL. Finally,
using the indicators to help a robot understand underlying
reasons for incorrectness of advice and learn a model of the
teacher’s capabilities, is another interesting direction.
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