M.Sc. Information and Communication Engineering (PO 2014)

Module manual
Date: 01.09.2021

Department of Electrical Engineering and Information Technology
Contents

1 Mandatory

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Digital Integrated Circuit Design</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Digital Signal Processing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical Electrodynamics for iCE</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Optical Communications – Components</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Communication Technology II</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Communication Networks II</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

2 Optional Fundamentals

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Theory II</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Antennas and Adaptive Beamforming</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Mobile Communications</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Mobile Networking</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

3 Optionals

3.1 Device Technology and Circuit Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Electromechanical Systems I</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Printed Electronics</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Applied Superconductivity</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Microwave Measurement Technologies</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Industrial Electronics</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Introduction to Spintronics</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Seminars</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Project Seminar Advanced μWave Components & Antennas</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Project Seminar Design for Testability</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Seminar Integrated Electronic Systems Design A</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Seminar: Integrated Electronic Systems Design B</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Laboratories</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Advanced Integrated Circuit Design Lab</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Electronic System Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Computer Systems II</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Low-Level Synthesis</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>High-Level Synthesis</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Real-Time Systems</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Microprocessor Systems</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Computer Aided Design for SoCs</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Modelling and simulation of circuits</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Seminars</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Project Seminar Design for Testability</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Projektseminar Rekonfigurable Systems</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Seminar Integrated Electronic Systems Design A</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Seminar Software System Technology</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Seminar: Integrated Electronic Systems Design B</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Laboratories</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>HDL Lab</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>
Contents

3.3 Communication Technology

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Lectures</td>
<td>47</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Adaptive Filters</td>
<td>47</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Antennas and Adaptive Beamforming</td>
<td>49</td>
</tr>
<tr>
<td>3.3.1.3</td>
<td>Computer Vision in Engineering</td>
<td>51</td>
</tr>
<tr>
<td>3.3.1.4</td>
<td>Microwave Engineering II</td>
<td>53</td>
</tr>
<tr>
<td>3.3.1.5</td>
<td>MIMO - Communication and Space-Time-Coding</td>
<td>54</td>
</tr>
<tr>
<td>3.3.1.6</td>
<td>Speech and Audio Signal Processing</td>
<td>55</td>
</tr>
<tr>
<td>3.3.1.7</td>
<td>Terahertz Systems and Applications</td>
<td>57</td>
</tr>
<tr>
<td>3.3.1.8</td>
<td>Computational Electromagnetics and Applications I</td>
<td>59</td>
</tr>
<tr>
<td>3.3.1.9</td>
<td>Microwave Measurement Technologies</td>
<td>60</td>
</tr>
<tr>
<td>3.3.1.10</td>
<td>Robust Signal Processing With Biomedical Applications</td>
<td>62</td>
</tr>
<tr>
<td>3.3.1.11</td>
<td>Matrix Analysis and Computations</td>
<td>64</td>
</tr>
<tr>
<td>3.3.1.12</td>
<td>Data Science I</td>
<td>66</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Seminars</td>
<td>68</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Project Seminar Advanced µWave Components & Antennas</td>
<td>68</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Project Seminar Emerging Topics in Sensor Array and Multichannel Processing</td>
<td>69</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Project Seminar Emerging topics in MIMO Communication Networks</td>
<td>70</td>
</tr>
<tr>
<td>3.3.2.4</td>
<td>Project Seminar Electromagnetic CAD</td>
<td>71</td>
</tr>
<tr>
<td>3.3.2.5</td>
<td>Signal Detection and Parameter Estimation</td>
<td>72</td>
</tr>
<tr>
<td>3.3.2.6</td>
<td>Advanced Topics in Statistical Signal Processing</td>
<td>74</td>
</tr>
<tr>
<td>3.3.2.7</td>
<td>Robust and Biomedical Signal Processing</td>
<td>75</td>
</tr>
<tr>
<td>3.3.2.8</td>
<td>Data Science II</td>
<td>77</td>
</tr>
<tr>
<td>3.3.2.9</td>
<td>Artificial Intelligence in Medicine Challenge</td>
<td>79</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Laboratories</td>
<td>80</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Digital Signal Processing Lab</td>
<td>80</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Software Lab Computational Electromagnetics and Applications I</td>
<td>81</td>
</tr>
<tr>
<td>3.4</td>
<td>Communication Systems</td>
<td>82</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Lectures</td>
<td>82</td>
</tr>
<tr>
<td>3.4.1.1</td>
<td>Acoustics I</td>
<td>82</td>
</tr>
<tr>
<td>3.4.1.2</td>
<td>Information Theory I</td>
<td>84</td>
</tr>
<tr>
<td>3.4.1.3</td>
<td>Information Theory II</td>
<td>85</td>
</tr>
<tr>
<td>3.4.1.4</td>
<td>MIMO - Communication and Space-Time-Coding</td>
<td>86</td>
</tr>
<tr>
<td>3.4.1.5</td>
<td>Mobile Communications</td>
<td>87</td>
</tr>
<tr>
<td>3.4.1.6</td>
<td>Microwave Measurement Technologies</td>
<td>89</td>
</tr>
<tr>
<td>3.4.1.7</td>
<td>Convex Optimization in Signal Processing and Communications</td>
<td>91</td>
</tr>
<tr>
<td>3.4.1.8</td>
<td>Sensor Array Processing and Adaptive Beamforming</td>
<td>93</td>
</tr>
<tr>
<td>3.4.1.9</td>
<td>Machine Learning in Information and Communication Technology (ICT)</td>
<td>95</td>
</tr>
<tr>
<td>3.4.1.10</td>
<td>Graph signal processing, learning and optimization</td>
<td>97</td>
</tr>
<tr>
<td>3.4.1.11</td>
<td>Automated Driving</td>
<td>99</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Seminars</td>
<td>101</td>
</tr>
<tr>
<td>3.4.2.1</td>
<td>International Summer School 'Microwaves and Lightwaves'</td>
<td>101</td>
</tr>
<tr>
<td>3.4.2.2</td>
<td>Project Seminar Wireless Communications</td>
<td>102</td>
</tr>
<tr>
<td>3.4.2.3</td>
<td>Artificial Intelligence in Medicine Challenge</td>
<td>103</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Laboratories</td>
<td>104</td>
</tr>
<tr>
<td>3.4.3.1</td>
<td>Laboratory Communication and Sensor Systems</td>
<td>104</td>
</tr>
<tr>
<td>3.5</td>
<td>Communication Science and Media Technology</td>
<td>106</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Lectures</td>
<td>106</td>
</tr>
<tr>
<td>3.5.1.1</td>
<td>Communication Networks IV</td>
<td>106</td>
</tr>
<tr>
<td>3.5.1.2</td>
<td>Network Security</td>
<td>108</td>
</tr>
<tr>
<td>3.5.1.3</td>
<td>Project on Secure Mobile Networking</td>
<td>110</td>
</tr>
<tr>
<td>3.5.1.4</td>
<td>Network, Traffic and Quality Management for Internet Services</td>
<td>112</td>
</tr>
<tr>
<td>3.5.1.5</td>
<td>Serious Games</td>
<td>113</td>
</tr>
<tr>
<td>3.5.1.6</td>
<td>Software Defined Networking</td>
<td>115</td>
</tr>
<tr>
<td>3.5.1.7</td>
<td>TK3: Ubiquitous / Mobile Computing</td>
<td>116</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Ubiquitous computing in business processes</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Machine Learning in Information and Communication Technology (ICT)</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Radar Techniques</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Relativistic Electrodynamics</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Reinforcement Learning</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Automated Driving</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>3.5.2 Seminars</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Multimedia Communications Seminar II</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>3.5.3 Laboratories</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Multimedia Communications Lab II</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Lab Exercise on Secure Mobile Networking</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Visual Computing Lab</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Multimedia Communications Project II</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Project on Secure Mobile Networking</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>3.6 IT in Engineering, Computer Science, Mathematics and Physics</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>4 Studium Generale</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>4.1 Business Administration</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Bookkeeping</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Introduction to Business Administration</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Introduction to Economics (V)</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>4.2 Languages</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>4.2.1 German Language Modules</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>German Basic Course I</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>German Basic Course I - Participation only</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>German Basic Course II/III</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>German Basic Course II/III - Participation only</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>German Basic Course IV/V</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>German Basic Course IV/V - Participation only</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>German Intensive Basic Course I</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>German Intensive Basic Course II/III</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>German Intensive Basic Course IV/V</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>4.3 Miscellaneous</td>
<td>154</td>
<td></td>
</tr>
</tbody>
</table>
1 Mandatory

<table>
<thead>
<tr>
<th>Module name</th>
<th>Advanced Digital Integrated Circuit Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>18-ho-2010</td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Self study</td>
<td>120 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>WiSe</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1 Content
MOS Transistor Models, CMOS Logic Gates, Chip Layout and Design Rules, Static and Dynamic Behavior of CMOS Circuits, Synchronous CMOS Circuits, Performance and Power Characterisation, Design Techniques and CAD Tools, FPGA and Gate Array Technologies, Memory Technologies, Chip Test.

2 Learning objectives / Learning Outcomes
A student is, after successful completion of this module, able to

- understand the short-channel effects of modern CMOS transistors,
- derive and analyse the most important circuit concepts for digital logic gates,
- understand the design flow of digital ASICs based on standard cells (design, layout, simulation/verification),
- knows the pros and cons of synchronous vs. asynchronous logic, multicycle phase systems,
- understands the differential design methods of integrated circuits (ASIC, ASIP, Custom/Semicustom, PLA, PLD, FPGA),
- understands basic circuitry of logic and arithmetic units (adders, multipliers, PLL/DLL),
- knows the design principles and properties of integrated semiconductor memory (DRAM, SRAM, Flash, MRAM, FeRAM).

3 Recommended prerequisite for participation
Lecture “Electronics”

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Duration: 90 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Weighting: 100 %)

6 Usability of this module
MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC, MSc EPE

7 Grade bonus compliant to §25 (2)

8 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2010-vl</td>
<td>Advanced Digital Integrated Circuit Design</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-ho-2010-ue</td>
<td>Advanced Digital Integrated Circuit Design</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Module name</td>
<td>Digital Signal Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Nr.</td>
<td>18-zo-2060</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self study</td>
<td>120 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle offered</td>
<td>WiSe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Content**
 1) Discrete-Time Signals and Linear Systems – Sampling and Reconstruction of Analog Signals
 2) Digital Filter Design – Filter Design Principles; Linear Phase Filters; Finite Impulse Response Filters; Infinite Impulse Response Filters; Implementations
 3) Digital Spectral Analysis - Random Signals; Nonparametric Methods for Spectrum Estimation; Parametric Spectrum Estimation; Applications;
 4) Kalman Filter

2. **Learning objectives / Learning Outcomes**
 Students will understand basic concepts of signal processing and analysis in time and frequency of deterministic and stochastic signals. They will have first experience with the standard software tool MATLAB.

3. **Recommended prerequisite for participation**
 Deterministic signals and systems theory

4. **Form of examination**
 Module Final Examination:
 - Module Examination (Technical Examination, Written Examination, Duration: 180 min, Standard Grading System)

5. **Grading**
 Module Final Examination:
 - Module Examination (Technical Examination, Written Examination, Weighting: 100%)

6. **Usability of this module**
 BSc ETiT, Wi-ETiT, MSc Medizintechnik

7. **Grade bonus compliant to §25 (2)**

8. **References**
 Course manuscript
 Additional References:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2060-vl</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir, M.Sc. Martin Gölz</td>
</tr>
<tr>
<td>Type</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2060-ue</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir, M.Sc. Martin Gölz</td>
</tr>
<tr>
<td>Type</td>
<td>Practice</td>
</tr>
<tr>
<td>SWS</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Technical Electrodynamics for iCE

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2150</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Herbert De Gersem

1 Content
2) Numerical solution of electromagnetic field problems – Space discretization with surface and volume meshes; Main numerical algorithms for discrete local approximation of Maxwell's equations; Finite Integration Technique; Time and frequency domain solution methods; Stability, convergence.
3) Practical aspects of electromagnetic simulation – Introduction to accuracy issues; Preprocessing: 3D geometry, computational domain, boundary conditions, electromagnetic field sources; Time vs frequency domain; Postprocessing; Network parameter extraction.
4) Application to typical high-frequency devices: Waveguide / resonator structures, planar structures

2 Learning objectives / Learning Outcomes
Students will understand fundamental principles of wave propagation, guided waves and antennas. They will be able to model microwave components with simulation software tools. They will have experience with state of the art software tools for electromagnetic fields.

3 Recommended prerequisite for participation
Fundamentals of electrodynamics (Grundlagen der Elektrodynamik)

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Duration: 180 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Weighting: 100 %)

6 Usability of this module
MSc iCE

7 Grade bonus compliant to §25 (2)

8 References
Course manuscript
Additional References:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2150-vl</td>
<td>Technical Electrodynamics for iCE</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-dg-2150-ue</td>
<td>Technical Electrodynamics for iCE</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. Irina Munteanu, M.Sc. Armin Herbert Galetzka
Module name
Optical Communications – Components

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-1050</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. rer. nat. Sascha Preu

1 Content
The lecture discusses the working principle of the most important devices and components of modern telecommunication networks and optical data transmission systems. The starting point will be basic physical principles:
The nature of light
- Wave equation
- Polarization
- Absorption, transmission, reflection, refraction
- Mirrors, HR-/AR coatings

Waveguides
- Fiber-optic waveguides
- Attenuation, modes, dispersion
- Fiber types
- Connectors and splices
- Dispersion and dispersion compensation
- Kerr nonlinearity and self-phase modulation

Components, e.g.:
- Optical filters
- Wavelength division multiplexers
- Magneto-optical effect / optical isolator / circulator
- Electro-optic modulator

Lasers
- Basics, concepts, types
- Erbium-doped fiber lasers / amplifiers (EDFL / EDFA)
- Optical semiconductor laser / amplifier (laser diode)

Other selected components and devices

2 Learning objectives / Learning Outcomes
Students understand concepts, basics of physics, design criteria and system requirements (component specifications) of the most important passive and active components of optical communications.

3 Recommended prerequisite for participation
ET 1-4, Physics

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Duration: 90 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Weighting: 100%)

6 Usability of this module
BSc ETiT, MSc ETiT, MSc iCE
Grade bonus compliant to §25 (2)

References
- Lecture slides
- Textbook (M. Cvijetic, I. B. Djordjevic: „Advanced Optical Communication Systems and Networks“)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-1050-vl</td>
<td>Optical Communications – Components</td>
<td>Prof. Dr. rer. nat. Sascha Preu</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-pr-1050-ue</td>
<td>Optical Communications – Components</td>
<td>Prof. Dr. rer. nat. Sascha Preu</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Communication Technology II

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2010</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Anja Klein

1 Content
linear and nonlinear digital modulation schemes, optimum receivers for AWGN channels, error probability, channel capacity, channel models, channel estimation and data detection for multipath channels, multicarrier schemes, OFDM

2 Learning objectives / Learning Outcomes
After completion of the lecture, students possess:
- the ability of comparing, evaluating, classifying and analyzing linear and nonlinear modulation schemes by means of signal space representations;
- the ability to understand, describe and analyze the influence of AWGN on the signal;
- the ability to understand and derive optimum receivers in case of AWGN channels;
- the ability to understand, describe and analyze the influence of multipath propagation on the signal;
- the ability to describe the influence of a multipath channel mathematically (channel model) and estimate the multipath channel at the receiver;
- the knowledge of equalizing the received signal in order to undo the influence of multipath propagation, as well as the ability to derive and design several equalizer structures;
- the ability to analyze and evaluate the properties and application areas of multicarrier transmission systems, e.g. OFDM-systems;
- the ability to design and evaluate the system parameters of multicarrier schemes for the application in realistic mobile radio scenarios;

3 Recommended prerequisite for participation
Electrical Engineering I and II, Deterministische Signale und Systeme, Stochastische Signale und Systeme, Communication Technology I, Basics of Telecommunication, Mathematics I to IV

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Duration: 90 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Weighting: 100%)

6 Usability of this module
MSc ETIT, MSc Wi-ETIT, MSc CE, MSc iCE, MSc iST, MSc MEC

7 Grade bonus compliant to §25 (2)

8 References
will be announced in the lecture

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2010-vl</td>
<td>Communication Technology II</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-kl-2010-ue</td>
<td>Communication Technology II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Anja Klein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Communication Networks II

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Ralf Steinmetz</td>
</tr>
</tbody>
</table>

Content
The course Communication Networks II covers the principles and practice of computer networking and telecommunications with emphasis on the Internet. Starting with the history, the course discusses past, current and future aspects of communication networks. In addition to the basics including well known protocols and technologies, recent developments in the area of multimedia communication (e.g., Video Streaming, P2P, IP Telephony, Cloud Computing and Service-oriented Architectures) will be examined thoroughly. The course is designed as follow-up to Communication Networks I.

Topics are:
- Basics and History of Communication Networks (Telegraphy vs. Telephony, Reference Models, ...)
- Transport Layer (Addressing, Flow Control, Connection Management, Error Detection, Congestion Control, ...)
- Transport Protocols (TCP, SCTP)
- Interactive Protocols (Telnet, SSH, FTP, ...)
- Electronic Mail (SMTP, POP3, IMAP, MIME, ...)
- World Wide Web (HTML, URL, HTTP, DNS, ...)
- Distributed Programming (RPC, Web Services, Event-based Communication)
- SOA (WSDL, SOAP, REST, UDDI, ...)
- Cloud Computing (SaaS, PaaS, IaaS, Virtualization, ...)
- Overlay Networks (Unstructured P2P, DHT Systems, Application Layer Multicast, ...)
- Video Streaming (HTTP Streaming, Flash Streaming, RTP/RTSP, P2P Streaming, ...)
- VoIP and Instant Messaging (SIP, H.323)

Learning objectives / Learning Outcomes
The course Communication Networks II covers the principles and practice of computer networking and telecommunications with emphasis on the Internet. Starting with the history, the course discusses past, current and future aspects of communication networks. In addition to the basics including well known protocols and technologies, recent developments in the area of multimedia communication (e.g., Video Streaming, P2P, IP Telephony, Cloud Computing and Service-oriented Architectures) will be examined thoroughly. The course is designed as follow-up to Communication Networks I.

Recommended prerequisite for participation
Basic courses of first 4 semesters are required. Knowledge in the topics covered by the course Communication Networks I is recommended. Theoretical knowledge obtained in the course Communication Networks II will be strengthened in practical programming exercises. So, basic programming skills are beneficial.

Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Duration: 120 min, Standard Grading System)

Grading
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Weighting: 100 %)

Usability of this module
MSc ETiT, MSc iST, Wi-ETiT, CS, Wi-CS

Grade bonus compliant to §25 (2)

References
Selected chapters from following books:

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-sm-2010-vl</td>
</tr>
<tr>
<td>Instructor</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Lecture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2010-ue</td>
<td>Communication Networks II</td>
</tr>
<tr>
<td>Instructor</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
2 Optional Fundamentals

<table>
<thead>
<tr>
<th>Module name</th>
<th>Information Theory II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>18-pe-2010</td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Self study</td>
<td>120 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>SoSe</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
</tr>
</tbody>
</table>

1 Content
This lecture course is devoted to advances of network information theory. Outline: overview of Shannon capacity, outage and ergodic capacity, capacity of channels with state, capacity of Gaussian vector channels, capacity regions of multi-user channels, capacity regions of multiple-access and broadcast fading channels, interference channel, relay channel, multiuser bounds, multi-user diversity., wiretap channel, secrecy rate and physical layer security.

2 Learning objectives / Learning Outcomes
Students will understand advanced concepts and strategies in network information theory.

3 Recommended prerequisite for participation
Knowledge of basic communication theory.

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Optional, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Optional, Weighting: 100%)

6 Usability of this module
MSc ETiT, BSc iST, MSc Wi-ETiT, MSc iCE, BSc/MSc CE

7 Grade bonus compliant to §25 (2)

8 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2010-vl</td>
<td>Information Theory II</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2010-ue</td>
<td>Information Theory II</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Antennas and Adaptive Beamforming

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Rolf Jakoby</td>
</tr>
</tbody>
</table>

1. **Content**
 Overview of most important antenna parameters types as well as their applications. Fundamental theories: Fourier transform for far-field pattern calculations, antenna modeling techniques, antenna synthesis methods, image theory, determination of field regions of line sources, of the average radiated power density and power, directivity and gain. Antennas as key elements in power budgets of radio links, introducing the effective aperture of an antenna, deriving the relation between gain and effective aperture. Array antennas are a key hardware for beamforming and smart antenna systems: fundamentals of phased-scanning arrays, non-uniformly excited, equally spaced linear arrays, multi-dimensional planar arrays and mutual coupling effects. Wire antennas: still the most prevalent of all antenna forms, relatively simple in concept, easy to construct, very inexpensive. Antenna radiation fields and antenna parameters for different types of antennas are derived from Maxwell’s equations, applied for aperture antennas (horns, lenses or reflector antennas) and printed antennas (microstrip-patch and coplanar-slot antennas) Some basic numerical calculation methods: integral equation methods in the time and frequency domain, physical optics and uniform theory of diffraction are briefly summarized and compared for antennas and scattering problems. Smart antennas in communication and radar systems, with focus on beam steering and adaptive beamforming.

2. **Learning objectives / Learning Outcomes**
 Students will know basic antenna parameters: pattern, gain, directivity, half-power beamwidth, side-lobe-level, efficiency and input impedance to compare, assess and evaluate different antennas for various applications and operating frequencies. The antenna field regions, reactive near-field, near-field and far-field, can be differentiated and the far-field pattern of an antenna can be determined from given current distributions along the antenna by using Fourier transformation or integral solutions with distributed ideal dipoles as basic elements (antenna analysis). To assess in general physical requirements, constrains and limitations of antennas, students can use fundamental antenna theory: impedance matching techniques, antenna modeling and far-field pattern analysis, antenna synthesis, image theory and fundamental limits of electrically small antennas. After being incorporated into the different adaptive beamforming techniques, the array theory enables the student to design antenna systems that are assembled of a certain number of separate elements, feeding network, beamforming network etc. for phased-scanning or smart antennas in communications and sensing. Moreover, students are able to determine, analyze and evaluate the most important classes of antennas in wireless technology for many applications, operating frequencies, desired requirements or practical constrains: (1.) wire-dipole antennas, (2.) planar antennas (microstrip, dipole and slot antennas), (3.) aperture antennas (horn antennas, parabolic reflector antennas, lens antennas, Cassegrain and Gregorian double-reflector configurations), (4.) broadband and frequency-independent antennas (V antennas, biconical antennas, helical antennas, spiral and log-periodic antennas).

3. **Recommended prerequisite for participation**
 Fundamentals of Communications, Microwave Engineering 1

4. **Form of examination**
 Module Final Examination:
 - Module Examination (Technical Examination, Optional, Standard Grading System)

5. **Grading**
 Module Final Examination:
 - Module Examination (Technical Examination, Optional, Weighting: 100%)

6. **Usability of this module**
 BSc ETiT, MSc ETiT, MSc iCE, Wi-ETiT

7. **Grade bonus compliant to §25 (2)**
8 \textbf{References}

Jakoby, Skriptum Antennas and Adaptive Beamforming, wird am Beginn der Vorlesung verkauft und kann danach im FG-Sekretariat erworben werden

\begin{tabular}{|l|l|l|}
\hline
\textbf{Course Nr.} & \textbf{Course name} & \textbf{Type} & \textbf{SWS} \\
18-jk-2020-vl & Antennas and Adaptive Beamforming & Lecture & 3 \\
\hline
\textbf{Instructor} & Prof. Dr.-Ing. Rolf Jakoby, M.Sc. Matthias Nickel & & \\
\hline
\textbf{Course Nr.} & \textbf{Course name} & \textbf{Type} & \textbf{SWS} \\
18-jk-2020-ue & Antennas and Adaptive Beamforming & Practice & 1 \\
\hline
\textbf{Instructor} & Prof. Dr.-Ing. Rolf Jakoby, M.Sc. Matthias Nickel & & \\
\end{tabular}
Module name
Mobile Communications

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Anja Klein

1 Content
The lecture covers aspects of mobile communication systems with particular focus on the physical layer. Mobile radio systems, services, market, standardization duplex and multiple access techniques, cellular concept mobile radio channel, deterministic and stochastic description modulation schemes code division multiple access (CDMA) orthogonal frequency division multiplexing (OFDM) optimum and suboptimum receiver techniques cellular radio capacity and spectrum efficiency diversity methods multiple input multiple output (MIMO) systems power control and handover architecture of mobile radio systems

2 Learning objectives / Learning Outcomes
After completion of the lecture, students possess
- a profound understanding of physical layer aspects, e.g., transmission schemes, multiple access schemes of mobile communication systems, duplex schemes, multi carrier schemes, receiver techniques, multi antenna schemes
- a profound understanding of signal propagation in mobile radio systems (mobile radio channel)
- the ability to understand and solve problems of the field of the physical layer
- the ability to compare, analyse and evaluate different system concepts
- knowledge on modelling of the transmission properties of the mobile radio channel

3 Recommended prerequisite for participation
Deterministic Signals and Systems, Communication Technology I, Mathematics I to IV

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Duration: 90 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Weighting: 100 %)

6 Usability of this module
MSc ETIT, MSc Wi-ETIT, MSc CE, MSc iCE, MSc iST, MSc MEC

7 Grade bonus compliant to §25 (2)

8 References
will be announced in the lecture

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2020-vl</td>
<td>Mobile Communications</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Anja Klein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-kl-2020-ue</td>
<td>Mobile Communications</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Anja Klein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Mobile Networking

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0748</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>Every 2. Sem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Thorsten Strufe</td>
</tr>
</tbody>
</table>

Content
Mobile communications and wireless networking technology has seen a thriving development in recent years. The integrated course addresses the characteristics/principles of mobile networks in detail, and practical solutions are presented. Hereby our focus is on the network layer, which is often regarded as the glue of communication systems. In addition to describing the state of the art in technology we discuss actual research problems and learn about methodologies to approach such problems systematically. The contents of the course will be deepened by exercises.

Course contents:
- Introduction to mobile and wireless communications: Applications, history, market vision
- Overview of wireless transmission: frequencies & regulations, signals, antennas, signal propagation, multiplexing, modulation, spread spectrum, cellular systems
- Medium access control in the wireless domain: SDMA, FDMA, CDMA TDMA (fixed, Aloha, CSMA, DAMA, PRMA, MACA, collision avoidance, polling)
- Wireless local area networks: IEEE 802.11 standard including physical layer, MAC layer and access schemes, quality of service and power management
- Wireless metropolitan area networks: Wireless mesh networks, IEEE 802.16 standard including modes of operation, medium access control, quality of service and scheduling
- Mobility at network layer: Concepts to support mobility on various layers, Mobile IP
- Ad hoc networks: Terminology, basics and applications, characteristics of ad hoc communication, ad hoc routing paradigms and protocols
- Performance evaluation of mobile networks: Overview of performance evaluation, systematic approach / common mistakes and how to avoid them, experimental design and analysis
- Mobility at transport layer: Variants of TCP (indirect TCP, snoop TCP, mobile TCP, wireless TCP)
- Mobility at application layer. Outlook: Applications for mobile networks and wireless sensor networks

Learning objectives / Learning Outcomes
After successfully attending the course, students have an in-depth knowledge on the working of mobile communication networks. They have gained insight into media access control mechanisms dedicated to wireless communication and have a thorough understanding of mechanisms based on the network and the transport layers, with a focus on ad hoc and mesh networks. Moreover, the students have acquired knowledge about the connections between the different protocol layers and are able to apply the acquired knowledge on methodological analysis of real communication systems. The students are therefore be conversant with the characteristics and basic principles of wireless and mobile communications in theory and practice. The exercise-parts of the integrated course deepen the theoretical foundations by means of exercises, which consist of literature, calculation as well as practical implementation/application examples.

Recommended prerequisite for participation
Basic courses in Communication Networks are recommended.

Form of examination
Module Ecompanying Examination:
- [20-00-0748-iv] (Technical Examination, Written/Oral Examination, Standard BWS)

Grading
Module Ecompanying Examination:
- [20-00-0748-iv] (Technical Examination, Written/Oral Examination, Weighting: 100 %)

Usability of this module

B.Sc. Informatik
M.Sc. Informatik
M.Sc. Wirtschaftsinformatik
B.Sc. Psychologie in IT
Joint B.A. Informatik
B.Sc. Sportwissenschaft und Informatik
M.Sc. Sportwissenschaft und Informatik
Can be used in other degree programs.

7 **Grade bonus compliant to §25 (2)**
In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25 (2) der 5. Novelle der APB und den vom FB 20 am 30.3.2017 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

8 **References**
Selected literature, details are given in lecture.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0748-iv</td>
<td>Mobile Networking</td>
<td>Prof. Dr.-Ing. Thorsten Strufe</td>
<td>Integrated Course</td>
<td>4</td>
</tr>
</tbody>
</table>
3 Optionals

3.1 Device Technology and Circuit Design

3.1.1 Lectures

<table>
<thead>
<tr>
<th>Module name</th>
<th>Electromechanical Systems I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>18-kn-1050</td>
</tr>
<tr>
<td>Credit Points</td>
<td>5 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Self study</td>
<td>90 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>WiSe</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. Mario Kupnik</td>
</tr>
</tbody>
</table>

1 Content
Structure and design methods of electromechanical systems, mechanical, acoustical and thermal networks, transducers between mechanical and acoustical networks. Design and devices of electromechanical transducers.

2 Learning objectives / Learning Outcomes
Comprehension, description, calculation and application of the most relevant electromechanical transducers, comprising electrostatic transducer (e.g. microphone and accelerometer), piezoelectric transducers (e.g. micro motors, micro sensors), electrodynamic transducer (loudspeaker, shaker), piezomagnetic transducer (e.g. ultrasonic source). Design of complex electromechanical systems like sensors and actuators and their applications by applying the discrete element network method.

3 Recommended prerequisite for participation
Electrical Engineering and Information Technology I

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Optional, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Optional, Weighting: 100 %)

6 Usability of this module
BSc ETiT, BSc WI-ETiT, MSc MEC

7 Grade bonus compliant to §25 (2)

8 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1050-vl</td>
<td>Electromechanical Systems I</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Mario Kupnik, Prof. Dr. techn. Dr.h.c. Andreas Binder, M.Sc. Omar Ben Dali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Instructor</td>
<td>Type</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>18-kn-1050-ue</td>
<td>Electromechanical Systems I</td>
<td>Prof. Dr. Mario Kupnik, Prof. Dr. techn. Dr.h.c. Andreas Binder, M.Sc. Omar Ben Dali</td>
<td>Practice</td>
</tr>
</tbody>
</table>
Module name
Printed Electronics

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-17-5110</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Edgar Dörsam

1 Content
Printing technologies for functional printing (printing methods and systems); Design and materials for printed electronics (aerial, OFET, RFID); Activities for quality assurance; Examples of application (aerial, RFID, OFET, photovoltaic, batteries, lab on a chip).

2 Learning objectives / Learning Outcomes
On successful completion of this module, students should be able to:
- Describe the printing technologies that are applicable for “Printed Electronics”.
- Name materials that are appropriate to printing processes and to describe the impact of the materials on the design e.g. of antennas and OFETs.
- Classify and rate different activities for quality assurance.
- Explain basic functions, configurations, materials, and specific properties of printed antennas, RFIDs, photovoltaics and batteries.
- Describe “Printed Electronics” as a multidisciplinary task that consists of electrical engineering, material science, and mechanical engineering.

3 Recommended prerequisite for participation
Mechanical components and Mechatronics I and II recommended

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Technical Examination, Standard Grading System)
- Oral exam 30 min

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Technical Examination, Weighting: 100 %)

6 Usability of this module
WPB Master MPE III (Wahlfächer aus Natur- und Ingenieurwissenschaft)
WPB Master PST III (Fächer aus Natur- und Ingenieurwissenschaft für Papiertechnik)
Master ETIT IMNT; Master Mechatronik

7 Grade bonus compliant to §25 (2)

8 References
The current lecture notes can be downloaded from the web pages of the institute while the semester is in session.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-17-5110-vl</td>
<td>Printed Electronics</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

3.1 Device Technology and Circuit Design
Module name
Applied Superconductivity

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bf-2030</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
German and English

Module owner
Prof. Dr. Oliver Boine-Frankenheim

Content
- Basics of electrical conductivity at DC and RF
- Kamerligh-Onnes experiment, Meissner effect
- Superconductor state diagram
- London equations, Typ I / II Superconductor
- Cooper pairs (briefly: BCS theory, GL theory)
- Flux quantization, Flux vortices
- AC superconductivity, two fluid model, RF cavities
- Cooper pair tunneling, Josephson junctions
- Metrology: SQUIDs, (quantum-) Hall effect
- Superconductor magnetization, Hysteresis, Bean's model
- Applications: Magnets in accelerator and medical technology, precision field and current measurements, energy engineering

Learning objectives / Learning Outcomes
The students obtain a phenomenological understanding of superconductivity, which enables them to apply superconductors in engineering practice. Starting from Maxwellian electrodynamics, superconductors are in introduced as perfect conductors at zero frequency. Both their DC and AC properties are discussed. Theory shall be reduced as much as possible. Quantum mechanics is not a requirement for the course, however, simplified quantum mechanical models will be introduced. The focus of the lecture is put on applications, e.g. magnet technology or precision metrology.

Recommended prerequisite for participation
Electrodynamics (Maxwell's equations)

Form of examination
- Module Final Examination: Module Examination (Technical Examination, Oral Examination, Duration: 30 min, Standard Grading System)

Grading
- Module Final Examination: Module Examination (Technical Examination, Oral Examination, Weighting: 100%)

Usability of this module
MSc ETiT, MSc WI-ETiT, MSc iCE, BSc/MSc CE

Grade bonus compliant to §25 (2)

References

3.1 Device Technology and Circuit Design
| **Course Nr.** | 18-bf-2030-vl | **Course name** | Applied Superconductivity | **Instructor** | Dr.-Ing. Uwe Niedermayer | **Type** | Lecture | **SWS** | 2 |

3.1 Device Technology and Circuit Design
Module name
Microwave Measurement Technologies

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2090</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
German and English

Module owner
Prof. Dr.-Ing. Rolf Jakoby

Content
Introduction to microwave measurement technologies, high frequency components and their properties: rf power measurement, spectrum analysis, vector network analysis (s-parameter, x-parameter, calibration techniques), on-wafer measurements, load/source-pull, material characterization

Learning objectives / Learning Outcomes
By this module, Students will be enabled to understand the basic principles of microwave measurement technologies. They are able to use them in measurement applications. The following objectives are linked to the lecture:

- The students understand the basic features of the power measurements and the effects of a mismatch or pulsed signals and can independently carry out and interpret measurements.
- The students understand the basics of spectrum analysis and can carry out and interpret measurements independently.
- The students understand the basics of s-parameter measurements and calibration of network analyzers and can carry out and interpret measurements independently.
- Students are familiar with various methods for material characterization

Recommended prerequisite for participation
Recommended: Grundlagen der Nachrichtentechnik, Hochfrequenztechnik I

Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Oral Examination, Duration: 45 min, Standard Grading System)

Grading
Module Final Examination:
- Module Examination (Technical Examination, Oral Examination, Weighting: 100%)

Usability of this module
MSc etit, MSc WI-etit, MSc iCE, MSc iST

Grade bonus compliant to §25 (2)

References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2090-vl</td>
<td>Microwave Measurement Technologies</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-jk-2090-ue</td>
<td>Microwave Measurement Technologies</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Instructor</td>
<td>Type</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>18-jk-2090-pr</td>
<td>Microwave Measurement Technologies Lab</td>
<td>PD Dr. habil. Holger Maune</td>
<td>Internship</td>
</tr>
</tbody>
</table>
Module name

Industrial Electronics

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2210</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German and English</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1 Content

2 Learning objectives / Learning Outcomes

After successful completion of the module, students are able to: 1. understand the use of electronic components in typical industrial environments, 2. understand the function of the building blocks of typical IE components, 3. deeply understand the functioning of analog building blocks, 4. understand relevant field bus systems, 5. understand the regulatory and technical standards of industrial electronics components.

3 Recommended prerequisite for participation

Lecture “Elektronik” and “Analog IC Design”

4 Form of examination

Module Final Examination:
- Module Examination (Technical Examination, Optional, Standard Grading System)

5 Grading

Module Final Examination:
- Module Examination (Technical Examination, Optional, Weighting: 100%)

6 Usability of this module

MSc ETiT, M.Sc. iCE, M.Sc. MEC

7 Grade bonus compliant to §25 (2)

8 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2210-vl</td>
<td></td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Roland Steck</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2210-ue</td>
<td></td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Roland Steck</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name

Introduction to Spintronics

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-me-2020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. rer. nat. Markus Meinert</td>
</tr>
</tbody>
</table>

Content

The lecture covers the following subjects:

- Basics of atomic physics (structure of the atoms, electron hull)
- Basics of solid state physics (crystalline materials)
- Introduction to electron transport in solids (classical treatment, band structures)
- Basic notions and simple models of magnetism
- Magnetism in thin films
- Spin-dependent electronic transport
- Magnetoresistive effects, anisotropic magnetoresistance
- Giant magnetoresistance (GMR)
- Tunneling magnetoresistance (TMR)
- Spin-Transfer Torque
- Magnetic microwave oscillators
- Spin-Hall effect and other spin-orbit effects
- Materials for spintronics (ferromagnets, antiferromagnets)
- Magnetic data storage
- Spintronic devices as sensors
- Magnetic random-access memory (MRAM)

Learning objectives / Learning Outcomes

The students learn fundamental concepts of spintronics, from properties of magnetic materials to the design and application of spintronic devices in data storage and magnetic sensing. The students acquire the competence to make use of spintronic devices in applications. They further acquire the competence to understand current scientific literature and to dive deeper into the field.

Recommended prerequisite for participation

Module 11-01-6419 Materials of Electrical Engineering

Form of examination

Module Final Examination:

- Module Examination (Technical Examination, Written/Oral Examination, Duration: 120 min, Standard Grading System)

The examination takes place in form of a written exam (duration: 120 minutes). If one can estimate that less than 16 students register, the examination will be an oral examination (duration: 45 min.). The type of examination will be announced in the beginning of the lecture.

Grading

Module Final Examination:

- Module Examination (Technical Examination, Written/Oral Examination, Weighting: 100%)

Usability of this module

Yes

References

3.1 Device Technology and Circuit Design

26
Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-me-2020-vl</td>
<td>Introduction to Spintronics</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. rer. nat. Markus Meinert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-me-2020-ue</td>
<td>Introduction to Spintronics</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. rer. nat. Markus Meinert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module Seminars

3.1.2 Seminars

Module name
Project Seminar Advanced μWave Components & Antennas

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2060</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

Language
German and English

Module owner
Prof. Dr.-Ing. Rolf Jakoby

Content
Groups of 2-3 students per project. Students work out a well defined fundamental or actual research-related problem. The projects will be actualized in each cycle being offered and introduced at the beginning. Each group will be supervised individually. The projects comprises modern antennas for multitudinous applications, electronically-steerable antennas, RFIDs, RF sensors, adaptive tunable components such as matching networks, filter, passive mixer and modulator for next-generation mobile terminals and sensor systems.

Learning objectives / Learning Outcomes
Research-oriented Project Seminar in groups of 2-3 students per project with individual supervision. Students will learn:

- how to solve scientific hardware-oriented problems
- working out concepts
- how to design, realize and characterize RF devices
- how to use commercial software and characterization tools
- to evaluate and discuss their work in the context of the state-of-art in this field
- to write a brief scientific report about their work
- to present and discuss their results at the end of the Project Seminar

Recommended prerequisite for participation
Fundamentals of Microwave Engineering I and Antennas and Adaptive Beamforming

Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 30 min, Standard Grading System)

Grading
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100%)

Usability of this module
MSc ETiT, MSc iCE, Wi-ETiT

Grade bonus compliant to §25 (2)

References
Publications will be hand out to them. Software and characterization tools as well as tools to realize RF devices are available.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2060-pj</td>
<td>Project Seminar Advanced μWave Components & Antennas</td>
<td>Prof. Dr.-Ing. Rolf Jakoby, Dr.-Ing. Martin Schüßler</td>
<td>Project Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

3.1 Device Technology and Circuit Design
Module name
Project Seminar Design for Testability

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2130</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1 **Content**
Learning advanced Methods for Testing Microchips after Manufacturing and Practical Application in small Design Scenarios, Final Presentation

2 **Learning objectives / Learning Outcomes**
Learning advanced Methods for Testing Microchips after Manufacturing and Practical Application in small Design Scenarios, Final Presentation

3 **Recommended prerequisite for participation**
Lecture “Advanced Digital Integrated Circuit Design”

4 **Form of examination**
Module Final Examination:
- Module Examination (Study Achievement, Optional, Standard Grading System)

5 **Grading**
Module Final Examination:
- Module Examination (Study Achievement, Optional, Weighting: 100 %)

6 **Usability of this module**
MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC, MSc EPE

7 **Grade bonus compliant to §25 (2)**

8 **References**
Slide Copies

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2130-pj</td>
<td>Project Seminar Design for Testability</td>
<td>Project Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

3.1 Device Technology and Circuit Design
Module name
Seminar Integrated Electronic Systems Design A

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2160</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1. **Content**
 Research oriented Formulation of a Topic within the area of Microelectronics System Design; Creation of a written Documentation and Presentation; Team Work

2. **Learning objectives / Learning Outcomes**
 A student is, after successful completion of this module, able to
 - gain a deep understanding of the chosen research subject in the field of integrated electronic systems,
 - write an essay on the chosen subject in a comprehensive form and present the outcome to an audience

3. **Recommended prerequisite for participation**

4. **Form of examination**
 Module Final Examination:
 - Module Examination (Study Achievement, Oral Examination, Duration: 45 min, Standard Grading System)

5. **Grading**
 Module Final Examination:
 - Module Examination (Study Achievement, Oral Examination, Weighting: 100 %)

6. **Usability of this module**
 MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC

7. **Grade bonus compliant to §25 (2)**

8. **References**
 Topic-oriented Materials will be provided

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2160-se</td>
<td>Seminar Integrated Electronic Systems Design A</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Klaus Hofmann

3.1 Device Technology and Circuit Design
Module name
Seminar: Integrated Electronic Systems Design B

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2161</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1 Content
Research oriented Formulation of a Topic within the area of Microelectronics System Design; Creation of a written Documentation and Presentation; Team Work

2 Learning objectives / Learning Outcomes
A student is, after successful completion of this module, able to
- gain a deep understanding of the chosen research subject in the field of integrated electronic systems,
- write an essay on the chosen subject in a comprehensive form and present the outcome to an audience

3 Recommended prerequisite for participation

4 Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 45 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100 %)

6 Usability of this module
MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC

7 Grade bonus compliant to §25 (2)

8 References
Topic-oriented Materials will be provided

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2161-se</td>
<td>Seminar: Integrated Electronic Systems Design B</td>
<td>Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Klaus Hofmann

3.1 Device Technology and Circuit Design
3.1.3 Laboratories

Module name
Advanced Integrated Circuit Design Lab

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2120</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1. **Content**
 Practical Design Tasks in Full Custom Design of Digital or Analog Circuits using State-of-the-Art Commercial CAD Tools

2. **Learning objectives / Learning Outcomes**
 A student is, after successful completion of this module, able to
 1. develop and verify transistor circuitry using Cadence
 2. simulate logic and analog circuits (Pre- and Postlayout)
 3. draw, verify and extract layout

3. **Recommended prerequisite for participation**
 Lecture “Advanced Digital Integrated Circuit Design” or “Analog Integrated Circuit Design”

4. **Form of examination**
 Module Final Examination:
 - Module Examination (Study Achievement, Optional, Standard Grading System)

5. **Grading**
 Module Final Examination:
 - Module Examination (Study Achievement, Optional, Weighting: 100 %)

6. **Usability of this module**
 MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC, MSc EPE

7. **Grade bonus compliant to §25 (2)**

8. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2120-pr</td>
<td>Advanced Integrated Circuit Design Lab</td>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Klaus Hofmann

3.1 Device Technology and Circuit Design 32
3.2 Electronic System Design

3.2.1 Lectures

<table>
<thead>
<tr>
<th>Module name</th>
<th>Computer Systems II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>18-hb-2030</td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Self study</td>
<td>120 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>German</th>
</tr>
</thead>
</table>

| Module owner | Prof. Dr.-Ing. Christian Hochberger |

1 **Content**
- Configurable Technologies
- FPGA architectures and properties
- System-On-Chip, HW components, SW toolchain, support SW
- Coarse grained reconfigurable architectures, PE architecture, Modulo scheduling

2 **Learning objectives / Learning Outcomes**
After completion of the module, students know reconfigurable technologies as well as chip architecture that employ them (e.g. FPGAs and CGRAs). They can select an appropriate technology for a given specific application. They know the components a system-on-chip (SoC) consists of. Students can configure and program an application specific SoC. They can map simple applications to a CGRA and know the limitations and pitfalls of this mapping.

3 **Recommended prerequisite for participation**
Thorough basic knowledge of digital circuits and computer architecture, as can be obtained in the lectures “Logischer Entwurf” and “Rechnersysteme I”. Additionally, students should be able to write simple programs in the programming language C.

4 **Form of examination**
Module Final Examination:
- Module Examination (Technical Examination, Oral Examination, Duration: 30 min, Standard Grading System)

5 **Grading**
Module Final Examination:
- Module Examination (Technical Examination, Oral Examination, Weighting: 100%)

6 **Usability of this module**
MSc ETiT, MSc iST, MSc iCE, MSc Wi-ETiT

7 **References**
The slides (in German) of the lecture can be obtained through moodle.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>18-hb-2030-vl</th>
<th>Course name</th>
<th>Computer Systems II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Christian Hochberger, M.Sc. Ramon Wirsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Lecture</td>
<td>SWS</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>18-hb-2030-ue</th>
<th>Course name</th>
<th>Computer Systems II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Christian Hochberger, M.Sc. Ramon Wirsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Practice</td>
<td>SWS</td>
<td>1</td>
</tr>
</tbody>
</table>
The module deals with synthesis steps on all abstraction layers below the register transfer level focusing on approaches suitable for FPGAs. At the logic level different types of minimization are explained (exact and heuristic two level minimizations, exact and heuristic multi level logic minimizations). The transition to the technology level is achieved by different decomposition and structural mapping techniques (FlowMap). Place&Route add geometric information to the technology mapped circuit. Analytical and heuristic placers are discussed (Simulated Annealing, Genetic Placers) and routing is illustrated through the PathFinder algorithm.

After completion of the module, students are enabled to investigate synthesis approaches for low level synthesis tasks. They can evaluate these approaches regarding their time and space complexity, as well as regarding their applicability to specific implementation technologies. Students can apply these approaches to new architectures and technologies.

Knowledge of hardware synthesis on the basis of at least one hardware description language is required (e.g. Reese/Thornton: Introduction to Logic Synthesis Using Verilog Hdl oder Brown/Vranesic: Fundamentals of Digital Logic with VHDL Design). The student should have basic knowledge of at least one object oriented programming language, preferably Java.

Module Final Examination:
- Module Examination (Technical Examination, Oral Examination, Duration: 30 min, Standard Grading System)

Module Final Examination:
- Module Examination (Technical Examination, Oral Examination, Weighting: 100%)

MSc ETiT, MSc iCE, MSc iST

A script of the lecture (in German) and English foils can be obtained from here: http://www.rs.tu-darmstadt.de/
Module name
High-Level Synthesis

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
</tr>
</tbody>
</table>

1. **Content**
 - Mapping of behavioral descriptions (e.g. in the form of program fragments) on FPGA and CGRA structures
 - Sub-tasks allocation, scheduling, binding
 - Exact or heuristic solutions
 - Design principles of heuristic solutions

2. **Learning objectives / Learning Outcomes**
 Students that have completed this module know alternative approaches for all of the tasks of the high level synthesis and can select appropriate ones for specific applications. They can evaluate the memory and time complexity of the given algorithms. They are enabled to adapt the algorithms for new constraints and new target technologies.

3. **Recommended prerequisite for participation**
 Knowledge of hardware synthesis on the basis of at least one hardware description language is required (e.g. Reese/Thornton: Introduction to Logic Synthesis Using Verilog Hdl oder Brown/Vranesic: Fundamentals of Digital Logic with VHDL Design). The student should have basic knowledge of at least one object oriented programming language, preferably Java

4. **Form of examination**
 Module Final Examination:
 - Module Examination (Technical Examination, Oral Examination, Duration: 30 min, Standard Grading System)

5. **Grading**
 Module Final Examination:
 - Module Examination (Technical Examination, Oral Examination, Weighting: 100%)

6. **Usability of this module**
 MSc ETiT, BSc/MSc iST, MSc iCE

7. **Grade bonus compliant to §25 (2)**

8. **References**
 English slides can be obtained through Moodle.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2020-vl</td>
<td>High-Level Synthesis</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2020-ue</td>
<td>High-Level Synthesis</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The lecture basically covers a model-driven software engineering process which is specially customized for real-time systems. This process is more deeply explored in the exercise using an automotive example. A focus is laid on object-oriented techniques. In this context, a real-time specific state-of-the-art CASE tool is introduced and used. Furthermore, fundamental characteristics of real-time systems and system architectures are introduced. Scheduling algorithms are discussed to get insights into real-time operating systems. Finally, a comparison between the Java programming language and its expansion for real-time operating systems (RT Java) will conclude the lecture.

Students, who have successfully attended this lecture have acquired skills needed for the model-driven and object-oriented development of embedded real-time systems. This includes a deeper understanding of the following topics:

- classification of real-time systems
- create and analyze executable models
- application of real-time scheduling algorithms
- evaluation and comparison of pros/cons of real-time programming languages as well as real-time operating systems

Basic knowledge of software engineering techniques and excellent knowledge of at least one object-oriented programming language (preferably Java)

Module Final Examination:
- Module Examination (Technical Examination, Optional, Standard Grading System)

Module Final Examination:
- Module Examination (Technical Examination, Optional, Weighting: 100%)

MSc ETiT, BSc iST, MSc Wi-ETiT, BSc Informatik

www.es.tu-darmstadt.de/lehre/es/
Module name
Microprocessor Systems

Module Nr.	Credit Points	Workload	Self study	Duration	Cycle offered
18-ho-2040 | 4 CP | 120 h | 75 h | 1 | SoSe

Language
English

Module owner
Prof. Dr.-Ing. Klaus Hofmann

1 Content
Microprocessor Architectures, DSP Architectures and Hardware related Programming

2 Learning objectives / Learning Outcomes
A student is, after successful completion of this module, able to
• gain the overview on the fundamentals of computer architecture and the different processor classes (RISC, CISC, Mikrocontroller, CPU, DSP),
• understand the central building blocks of a CPU
• understand the major properties of the required semiconductor memories, I/O blocks and data busses (USB, PCI, RS232),
• understand the most commonly used Interrupt- and Trap-handling algorithms,
• know the common software development methodologies for microcontrollers (assembler, pseudooperations, makros, subprograms and subroutines),
• understand the most important fundamentals of hardware oriented programming using C.

3 Recommended prerequisite for participation
Basics of Computer Architectures

4 Form of examination
Module Final Examination:
• Module Examination (Technical Examination, Written Examination, Duration: 90 min, Standard Grading System)

5 Grading
Module Final Examination:
• Module Examination (Technical Examination, Written Examination, Weighting: 100 %)

6 Usability of this module
MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC, MSc EPE

7 Grade bonus compliant to §25 (2)

8 References
Slide Copies

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2040-vl</td>
<td>Microprocessor Systems</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Matthias Rychetsky</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2040-ue</td>
<td>Microprocessor Systems</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Matthias Rychetsky</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Computer Aided Design for SoCs

Module Nr.
18-ho-2200

Credit Points
5 CP

Workload
150 h

Self study
90 h

Duration
1

Cycle offered
SoSe

Language
English

Module owner
Prof. Dr.-Ing. Klaus Hofmann

1 Content
CAD-Concepts for the design and simulation of integrated system-on-chips

2 Learning objectives / Learning Outcomes
A student is, after successful completion of this module, able to understand
- The most important design and verification abstractions as well as the design flow for the design of integrated electronic systems,
- Selected algorithms for optimization, simulation and solving of design tasks,
- Advanced methods for the design and simulation of analog integrated circuits in modern CMOS technologies,
- Advanced concepts of hardware description languages and their concepts (Verilog, VHDL, Verilog-A, Verilog-AMS, System-Verilog)

3 Recommended prerequisite for participation
Lecture "Advanced Digital Integrated Circuit Design" (can be attended in parallel) and „Analog Integrated Circuit Design“ and "Logic Design"

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Duration: 90 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Weighting: 100 %)

6 Usability of this module
MSc ETiT, MSc iST, MSc MEC, MSc Wi-ETiT, MSc iCE

7 Grade bonus compliant to §25 (2)

8 References
Slide Copies

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2200-vl</td>
<td>Computer Aided Design for SoCs</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2200-ue</td>
<td>Computer Aided Design for SoCs</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2200-pr</td>
<td>Computer Aided Design for SoCs</td>
<td>Internship</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Modelling and simulation of circuits

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-2010</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
German and English

Module owner
Prof. Dr. rer. nat. Sebastian Schöps

1 Content
The content of this course is the following:
• Circuit interpretation as directed graphs
• Modified nodal and loop analysis
• Flux and charge oriented formulations
• Differential algebraic equations
• Linear system solver
• Numerical solution of nonlinear systems
• Time-domain methods
• Frequency-domain solution
• Implementation of the numerical methods

2 Learning objectives / Learning Outcomes
Students understand the theoretical and numerical fundamentals of circuit simulation and how the equations can be derived from Maxwell’s equations. Circuit properties can be expressed in terms of graph theory. The sparse systems of equations such as the flux/charge oriented modified nodal analysis can be assembled. In order to solve the obtained systems, different numerical methods for the simulation of circuits are relevant. This includes methods for the solution of linear systems (direct and iterative solvers), root-finding algorithms for nonlinear systems and implicit time integration methods. Mathematical concepts such as stability, convergence order or complexity are known and can be employed to judge the advantages and disadvantages of the various methods. Eventually, the students are able to program their own circuit simulator, that can return both frequency as well as time domain solutions of electric networks.

3 Recommended prerequisite for participation
18-hs-1070 Elektrotechnik und Informationstechnik I
18-gt-1020 Elektrotechnik und Informationstechnik II
20-00-0304 Allgemeine Informatik I
04-00-0112 Mathematik IV

4 Form of examination
Module Final Examination:
• Module Examination (Technical Examination, Oral Examination, Duration: 20 min, Standard Grading System)

5 Grading
Module Final Examination:
• Module Examination (Technical Examination, Oral Examination, Weighting: 100 %)

6 Usability of this module

7 Grade bonus compliant to §25 (2)
Grade bonus of 0,4 if correctly implemented programs are submitted

8 References

3.2 Electronic System Design

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-2010-vl</td>
<td>Modelling and simulation of circuits</td>
<td></td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-sc-2010-ue</td>
<td>Modelling and simulation of circuits</td>
<td></td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
3.2.2 Seminars

<table>
<thead>
<tr>
<th>Module name</th>
<th>Project Seminar Design for Testability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>18-ho-2130</td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Self study</td>
<td>135 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>SoSe</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1. **Content**
 Learning advanced Methods for Testing Microchips after Manufacturing and Practical Application in small Design Scenarios, Final Presentation

2. **Learning objectives / Learning Outcomes**
 Learning advanced Methods for Testing Microchips after Manufacturing and Practical Application in small Design Scenarios, Final Presentation

3. **Recommended prerequisite for participation**
 Lecture “Advanced Digital Integrated Circuit Design”

4. **Form of examination**
 Module Final Examination:
 - Module Examination (Study Achievement, Optional, Standard Grading System)

5. **Grading**
 Module Final Examination:
 - Module Examination (Study Achievement, Optional, Weighting: 100 %)

6. **Usability of this module**
 MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC, MSc EPE

7. **Grade bonus compliant to §25 (2)**

8. **References**
 Slide Copies

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2130-pj</td>
<td>Project Seminar Design for Testability</td>
<td>Project Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Klaus Hofmann
Module name
Projektseminar Rekonfigurable Systems

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2040</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Christian Hochberger

Content
Students will work in small groups in this course. Topics and application context will be defined individually for each group. All projects will follow the same approach. At first, the given problem will be described in a programmatic way. Following, it will be implemented by a reconfigurable system. Depending on the nature of the application, either predefined architectures will be used, parameterizable architectures will be adapted to the needs of the application or new architectures may be designed. The programmatic description will now be mapped (semi-)automatically to the chosen architecture with the help of the supporting tools. Usually, this requires to rewrite the programmatic description to better suit the tools. Finally, the solution will be evaluated using some benchmark data sets.

Learning objectives / Learning Outcomes
Successful students will know how to use reconfigurable systems within a given application context. They can use tools to program these systems and know how to map an application onto a given reconfigurable architecture. They are capable to evaluate the performance critical parts of an application. They understand the implications of different coding styles for a particular task.

Recommended prerequisite for participation
- Knowledge of reconfigurable devices (cf. course computer systems II)
- Knowledge of computer architecture (cf. course computer systems I)
- Solid programming skills (either in C or Java depending on the application scenario).

Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 30 min, Standard Grading System)

Grading
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100%)

Usability of this module
MSc ETiT, MSc iST, MSc Informatik, MSc iCE

References
Will be made available through the Moodle page for this course.

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2040-pj</td>
<td>Projektseminar Rekonfigurable Systems</td>
<td>Project Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Christian Hochberger
Module name
Seminar Integrated Electronic Systems Design A

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2160</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1. **Content**
 - Research oriented Formulation of a Topic within the area of Microelectronics System Design; Creation of a written Documentation and Presentation; Team Work

2. **Learning objectives / Learning Outcomes**
 - A student is, after successful completion of this module, able to
 - gain a deep understanding of the chosen research subject in the field of integrated electronic systems,
 - write an essay on the chosen subject in a comprehensive form and present the outcome to an audience

3. **Recommended prerequisite for participation**

4. **Form of examination**
 - Module Final Examination:
 - Module Examination (Study Achievement, Oral Examination, Duration: 45 min, Standard Grading System)

5. **Grading**
 - Module Final Examination:
 - Module Examination (Study Achievement, Oral Examination, Weighting: 100 %)

6. **Usability of this module**
 - MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC

7. **Grade bonus compliant to §25 (2)**

8. **References**
 - Topic-oriented Materials will be provided

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2160-se</td>
<td>Seminar Integrated Electronic Systems Design A</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
- Prof. Dr.-Ing. Klaus Hofmann
Module name
Seminar Software System Technology

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-2080</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. rer. nat. Andreas Schürr</td>
</tr>
</tbody>
</table>

1 Content
In this course, the students produce scientific reports from changing subject areas. Each student has to explore a subject related to IT system development and produce a written report as well as a final talk with a presentation. A list of the subjects of the current semester is available at www.es.tu-darmstadt.de/lehre/sst.

2 Learning objectives / Learning Outcomes
After a successful participation, the students will be able to explore an unknown topic under scientific aspects. The students learn to support the exploration by a literature research and to analyze the subject critically. They achieve the skills to present a definite subject in a written report as well as in an oral presentation.

3 Recommended prerequisite for participation
Basic knowledge in software engineering and programming languages

4 Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 30 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100 %)

6 Usability of this module
BSc iST, BSc Informatik, MSc ETiT

7 Grade bonus compliant to §25 (2)

8 References
www.es.tu-darmstadt.de/lehre/sst

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-2080-se</td>
<td>Seminar Software System Technology</td>
<td>Prof. Dr. rer. nat. Andreas Schürr</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Seminar: Integrated Electronic Systems Design B

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2161</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1. Content
Research oriented Formulation of a Topic within the area of Microelectronics System Design; Creation of a written Documentation and Presentation; Team Work

2. Learning objectives / Learning Outcomes
A student is, after successful completion of this module, able to
- gain a deep understanding of the chosen research subject in the field of integrated electronic systems,
- write an essay on the chosen subject in a comprehensive form and present the outcome to an audience

3. Recommended prerequisite for participation

4. Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 45 min, Standard Grading System)

5. Grading
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100 %)

6. Usability of this module
MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC

7. Grade bonus compliant to §25 (2)

8. References
Topic-oriented Materials will be provided

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2161-se</td>
<td>Seminar: Integrated Electronic Systems Design B</td>
<td>Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Klaus Hofmann
Module name
HDL Lab

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1090</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language

- **Module owner**
 - Prof. Dr.-Ing. Klaus Hofmann

1 Content

Realisation of a VHDL- or Verilog-based VLSI System Design Project in a Team with industrial constraints

2 Learning objectives / Learning Outcomes

A student is, after successful completion of this module, able to:
1. design, optimize and verify a complex digital system (e.g. a pipelined CPU or signal processor) using Verilog or VHDL,
2. synthesize the HDL description using commercial CAD software to a gate level description

3 Recommended prerequisite for participation

Mandatory Prerequisite: Lecture Computer Aided Design for System on Chips,
At least one high-level Programming Language, Basic Know-How Linux/Unix, Computer Architectures

4 Form of examination

Module Final Examination:
- Module Examination (Study Achievement, Optional, Standard Grading System)

5 Grading

Module Final Examination:
- Module Examination (Study Achievement, Optional, Weighting: 100%)

6 Usability of this module

BSc/MSc ETT, BSc/MSc Wi-ETiT, MSc iCE, BSc/MSc iST, BSc/MSc MEC, MSc EPE

7 Grade bonus compliant to §25 (2)

8 References

Lecture slides „HDL: Verilog and VHDL“

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1090-pr</td>
<td>HDL Lab</td>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor

- Prof. Dr.-Ing. Klaus Hofmann
3.3 Communication Technology

3.3.1 Lectures

<table>
<thead>
<tr>
<th>Module name</th>
<th>Adaptive Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>18-zo-2010</td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Self study</td>
<td>120 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>SoSe</td>
</tr>
<tr>
<td>Language</td>
<td>German and English</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
</tr>
</tbody>
</table>

1 Content
 Theory:
 1) Derivation of optimal filters for stochastic processes, e.g. Wiener filter or linear prediction filter based on suitable cost functions.
 2) Elaboration of adaptive procedures, which allow to iteratively approach the optimal solution for non-stationary signals in non-stationary environments. Here, the adaptive procedures such as NLMS adaptation, affine projection, and the RLS algorithm are derived and extensively analysed.
 3) Analysis of the adaptation behaviour and control procedures of adaptive filters based on the NLMS procedure.
 4) Derivation and analysis of the Kalman filter as optimal filter for non-stationary input signals.
 5) Procedures for the decomposition of signals into sub-bands for the realization of optimal filters in the frequency domain, e.g. noise reduction procedures.

Applications:
 Parallel to the theory, practical applications are explained. As an example for the Weiner filter, the acoustic noise reduction procedures are explained. Acoustic echo cancellation and feedback cancellation are given as examples for adaptive filters. Furthermore beamforming approaches are introduced.
 It is planned to offer an excursion to Siemens Audiology Engineering Group in Erlangen.
 In the 4 to 5 exercises, some content of the lecture will be implemented in MATLAB which allows the students to get familiar with practical realizations of the theoretical procedures.

2 Learning objectives / Learning Outcomes
 During the lecture, basics of adaptive filters are taught. The necessary algorithms are derived, interpreted and applied to examples of speech, audio and video processing.
 Based on the content of the lecture you are able to apply adaptive filters to real practical applications.
 For the admission to the exam you give a talk about a topic in the domain of adaptive filters chosen by you. This will allow you to acquire the know-how to read and understand scientific literature, familiarize yourself with an unknown topic and present your knowledge, such as it will be certainly required from you in your professional life as an engineer.

3 Recommended prerequisite for participation
 Digital Signal Processing

4 Form of examination
 Module Final Examination:
 • Module Examination (Technical Examination, Optional, Standard Grading System)

5 Grading
 Module Final Examination:
 • Module Examination (Technical Examination, Optional, Weighting: 100%)

6 Usability of this module
 MSc ETiT

7 Grade bonus compliant to §25 (2)

8 References
Slides of the lecture.

Literature:
- E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control, Wiley, 2004 (Textbook of this course);

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2010-vl</td>
<td>Adaptive Filters</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Henning Puder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2010-ue</td>
<td>Adaptive Filters</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Henning Puder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Antennas and Adaptive Beamforming

Module Nr. 18-jk-2020
Credit Points 6 CP
Workload 180 h
Self study 120 h
Duration 1
Cycle offered WiSe

Language English
Module owner Prof. Dr.-Ing. Rolf Jakoby

1 Content
Overview of most important antenna parameters types as well as their applications. Fundamental theories: Fourier transform for far-field pattern calculations, antenna modeling techniques, antenna synthesis methods, image theory, determination of field regions of line sources, of the average radiated power density and power, directivity and gain. Antennas as key elements in power budgets of radio links, introducing the effective aperture of an antenna, deriving the relation between gain and effective aperture. Array antennas are a key hardware for beamforming and smart antenna systems: fundamentals of phased-scanning arrays, non-uniformly excited, equally spaced linear arrays, multi-dimensional planar arrays and mutual coupling effects. Wire antennas: still the most prevalent of all antenna forms, relatively simple in concept, easy to construct, very inexpensive. Antenna radiation fields and antenna parameters for different types of antennas are derived from Maxwell’s equations, applied for aperture antennas (horns, lenses or reflector antennas) and printed antennas (microstrip-patch and coplanar-slot antennas) Some basic numerical calculation methods: integral equation methods in the time and frequency domain, physical optics and uniform theory of diffraction are briefly summarized and compared for antennas and scattering problems. Smart antennas in communication and radar systems, with focus on beam steering and adaptive beamforming.

2 Learning objectives / Learning Outcomes
Students will know basic antenna parameters: pattern, gain, directivity, half-power beamwidth, side-lobe-level, efficiency and input impedance to compare, assess and evaluate different antennas for various applications and operating frequencies. The antenna field regions, reactive near-field, near-field and far-field, can be differentiated and the far-field pattern of an antenna can be determined from given current distributions along the antenna by using Fourier transformation or integral solutions with distributed ideal dipoles as basic elements (antenna analysis). To assess in general physical requirements, constrains and limitations of antennas, students can use fundamental antenna theory: impedance matching techniques, antenna modeling and far-field pattern analysis, antenna synthesis, image theory and fundamental limits of electrically small antennas. After being incorporated into the different adaptive beamforming techniques, the array theory enables the student to design antenna systems that are assembled of a certain number of separate elements, feeding network, beamforming network etc. for phased-scanning or smart antennas in communications and sensing. Moreover, students are able to determine, analyze and evaluate the most important classes of antennas in wireless technology for many applications, operating frequencies, desired requirements or practical constrains: (1.) wire-dipole antennas, (2.) planar antennas (microstrip, dipole and slot antennas), (3.) aperture antennas (horn antennas, parabolic reflector antennas, lens antennas, Cassegrain and Gregorian double-reflector configurations), (4.) broadband and frequency-independent antennas (V antennas, biconical antennas, helical antennas, spiral and log-periodic antennas).

3 Recommended prerequisite for participation
Fundamentals of Communications, Microwave Engineering 1

4 Form of examination
Module Final Examination:
• Module Examination (Technical Examination, Optional, Standard Grading System)

5 Grading
Module Final Examination:
• Module Examination (Technical Examination, Optional, Weighting: 100%)

6 Usability of this module
BSc ETiT, MSc ETiT, MSc iCE, Wi-ETiT

7 Grade bonus compliant to §25 (2)
8 References
Jakoby, Skriptum Antennas and Adaptive Beamforming, wird am Beginn der Vorlesung verkauft und kann danach im FG-Sekretariat erworben werden

| Courses |
|--------------------------------|-----------------|-----------------|
| Course Nr. | Course name | Type | SWS |
| 18-jk-2020-vl | Antennas and Adaptive Beamforming | Lecture | 3 |
| Instructor | Prof. Dr.-Ing. Rolf Jakoby, M.Sc. Matthias Nickel |
| Course Nr. | Course name | Type | SWS |
| 18-jk-2020-ue | Antennas and Adaptive Beamforming | Practice | 1 |
| Instructor | Prof. Dr.-Ing. Rolf Jakoby, M.Sc. Matthias Nickel |
Module name
Computer Vision in Engineering

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2090</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
</tr>
</tbody>
</table>

Content

A Basics
- Scene Representation
 - 2D and 3D Geometry
- Image Acquisition
 - Geometric Projections
 - Camera Calibration
- Objective and Illumination
- Discrete 2D signals
 - Separability, Sampling
 - Transformation, Interpolation
 - Convolution, Correlation
 - Discrete Fourier Transformation

B Basics of Image Analysis
- Filtering
 - Basics
 - 2D Filter Design
 - Linear Filtering
 - Nonlinear Filtering
- Image Decompositions
 - Multi-scale Representation
 - Pyramids
 - Filter Banks
- Image Features
 - Structure
 - Moments, Histograms

Learning objectives / Learning Outcomes
The lecture communicates mathematical basics needed to solve computer vision problems in the field of engineering. The focus is on methods that are relevant for measuring and control tasks. Applications range from visual quality inspection, visual robotics, photogrammetry, visual odometry up to visually guided driver assistance etc.

The students should obtain a good understanding for the relations between the three-dimensional world and its two-dimensional projection onto the image plane of a camera. They also should learn about methods that exist to infer knowledge from the world given image data. They should develop some feeling for the different kinds of problems that arise in computer vision and how to choose an efficient solution in terms of algorithms.

Recommended prerequisite for participation

Form of examination

Module Final Examination:
- Module Examination (Technical Examination, Optional, Standard Grading System)

Grading

3.3 Communication Technology
Module Final Examination:
- Module Examination (Technical Examination, Optional, Weighting: 100%)

6 Usability of this module
MSc ETiT, MSc iST, MSc CE, MSc iST

7 Grade bonus compliant to §25 (2)

8 References
References / Textbooks: Lecture slides, exercise sheets and matlab-code.
Further reading
- Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer 2006.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2090-vl</td>
<td>Computer Vision in Engineering</td>
<td>Dr.-Ing. Thomas Guthier, Prof. Dr.-Ing. Jürgen Adamy</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-ad-2090-ue</td>
<td>Computer Vision in Engineering</td>
<td>Dr.-Ing. Thomas Guthier</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Microwave Engineering II

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2130</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Rolf Jakoby</td>
</tr>
</tbody>
</table>

1 Content
- **Part 1** Passive microwave components:
 - Calculation of the properties of simple passive components (microstrip line, filter, resonator, capacitor, inductance) for MMICs
- **Part 2** Active microwave components:
 - Semiconductor material systems: properties, fabrication and requirements
 - Contacts to semiconductor devices: properties and characteristics
 - Charge carrier transport: characteristics and scattering processes
 - Field Effect Transistor (FET) and heterostructure transistors (HEMTs)
- **Part 3** Active microwave circuits (main part):
 - Wave parameter and S-parameter
 - FET amplifier: operation, equivalent circuit, gain, matching circuit, stability and circuit implementation
 - Oscillator design
 - Mixer design

Applications of these circuits range from communication systems such as cell phones to satellite transceivers as well as high-frequency sources up to Terahertz.

2 Learning objectives / Learning Outcomes
Students will gain knowledge on the physics of microwave waveguides, resonators, microwave components (passive and active) as well as microwave circuits.

3 Recommended prerequisite for participation
Desirable: Introduction to Electrodynamics, Microwave Engineering I

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Duration: 90 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Weighting: 100%)

6 Usability of this module
MSc ETiT, MSc iCE, MSc IST, Wi-ETiT

7 Grade bonus compliant to §25 (2)

8 References
Script and slides will be handed out. Literature will be recommended in the lecture.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2130-vl</td>
<td>Microwave Engineering II</td>
<td>Lecture</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD Dr.-Ing. Oktay Yilmazoglu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2130-ue</td>
<td>Microwave Engineering II</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD Dr.-Ing. Oktay Yilmazoglu</td>
</tr>
</tbody>
</table>
Module name
MIMO - Communication and Space-Time-Coding

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2030</td>
<td>4 CP</td>
<td>75 h</td>
<td>120 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Marius Pesavento

1. **Content**
 This lecture course introduces the principles of space-time and multiple-input multiple-output (MIMO) communications. Outline: Motivation and background; overview of space-time and MIMO communications; fading MIMO channel models, MIMO information theory, receive and transmit diversity; channel estimation, MIMO detectors, Alamouti space-time block code, orthogonal space-time block codes; linear dispersion codes; coherent and non-coherent decoders, differential space-time block coding; MIMO with limited feedback, Multiantenna- and multiuser diversity, BER performance analysis, MIMO in modern wireless communication networks, multicell and multiuser MIMO (coordinated multipoint).

2. **Learning objectives / Learning Outcomes**
 Students will understand modern MIMO communications and existing space-time coding techniques.

3. **Recommended prerequisite for participation**
 Knowledge of basic communication theory and basic information theory.

4. **Form of examination**
 Module Final Examination:
 - Module Examination (Technical Examination, Optional, Standard Grading System)

5. **Grading**
 Module Final Examination:
 - Module Examination (Technical Examination, Optional, Weighting: 100%)

6. **Usability of this module**
 MSc ETIT

7. **Grade bonus compliant to §25 (2)**

8. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2030-vl</td>
<td>MIMO - Communication and Space-Time-Coding</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
</tr>
</tbody>
</table>

Type
- Lecture
- Practice

SWS
- 2
- 1

3.3 Communication Technology

54
Module name
Speech and Audio Signal Processing

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2070</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
</tr>
</tbody>
</table>

1 Content
Algorithms of speech and audio signal processing: Introduction to the models of speech and audio signals and basic methods of audio signal processing. Procedures of codebook based processing and audio coding. Beamforming for spatial filtering and noise reduction for spectral filtering. Cepstral filtering and fundamental frequency estimation. Mel-filterind cepstral coefficients (MFCCs) as basis for speaker detection and speech recognition. Classification methods based on GMM (Gaussian mixture models) and speech recognition with HMM (Hidden markov models). Introduction to the methods of music signal processing, e.g. Shazam-App or beat detection.

2 Learning objectives / Learning Outcomes
Based on the lecture you acquire an advanced knowledge of digital audio signal processing mainly with the help of the analysis of speech signals. You learn about different basic and advanced methods of audio signal processing, to range from the theory to practical applications. You will acquire knowledge about algorithms such as they are applied in mobile telephones, hearing aids, hands-free telephones, and man-machine-interfaces (MMI). The exercise will be organized as a talk given by each student with one self-selected topic of speech and audio processing. This will allow you to acquire the know-how to read and understand scientific literature, familiarize with an unknown topic and present your knowledge, such as it will be certainly required from you in your professional life as an engineer.

3 Recommended prerequisite for participation
Knowledge about satistical signal processing is required (lecture „Digital Signal Processing“). Desired – but not mandatory – is knowledge about adaptive filters.

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written/Oral Examination, Duration: 90 min, Standard Grading System)

Seminar presentation: Scientific talk about a topic in the field of “Speech and Audio Signal Processing”, single (duration 10-15 min) or in groups of two students (15-20 min) or in a group of 20 students and more a written exam (duration 90 min)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Written/Oral Examination, Weighting: 100 %)

6 Usability of this module
MSc ETiT, MSc iCE

7 Grade bonus compliant to §25 (2)

8 References
Slides (for further details see homepage of the lecture)

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2070-vl</td>
<td>Speech and Audio Signal Processing</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Henning Puder

3.3 Communication Technology
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2070-ue</td>
<td>Speech and Audio Signal Processing</td>
<td>Prof. Dr.-Ing. Henning Puder</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>18-zo-2070-se</td>
<td></td>
<td>Prof. Dr.-Ing. Henning Puder</td>
<td>Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

3.3 Communication Technology
Module name
Terahertz Systems and Applications

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-2010</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. rer. nat. Sascha Preu</td>
</tr>
</tbody>
</table>

Content
The lecture will give an overview of Terahertz applications, sources and detectors with the focus on semiconductor-based devices and Terahertz systems. Terahertz detection and generation will be discussed in detail for two types of highly important devices: Schottky diodes (mixers, multipliers and rectifiers) and photomixers (photo-diode based and photoconductive). The exercise, where performance parameters of the discussed devices will be derived for experimentally relevant cases, will help to deepen the understanding.

The last day will be used for a lab tour showing our measurements facilities and hands-on experiments.

Learning objectives / Learning Outcomes
After attending this lecture, the student has gained basic knowledge in the fields of THz generation, detection, systems, and applications of THz radiation, with deepened knowledge in:

- Working principle, spectra and limits of continuous-wave photomixers
- Working principle of Schottky diode mixers/multipliers and rectifiers in the THz range
- THz Applications

Recommended prerequisite for participation
Recommended: Bachelor in Electrical engineering, Physics, or Material Science
Helpful: Basic knowledge in semiconductor physics, High frequency 1

Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Oral Examination, Duration: 30 min, Standard Grading System)
*Oral exam (mandatory)

Grading
Module Final Examination:
- Module Examination (Technical Examination, Oral Examination, Weighting: 100%)

Usability of this module
MSc etit-KTS, MSc etit-IMNT, MSc etit, MSc iCE

Grade bonus compliant to §25 (2)

References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-2010-vl</td>
<td>Terahertz Systems and Applications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. rer. nat. Sascha Preu</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Instructor</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>18-pr-2010-ue</td>
<td>Terahertz Systems and Applications</td>
<td>Prof. Dr. rer. nat. Sascha Preu</td>
</tr>
</tbody>
</table>

3.3 Communication Technology
<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1030</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Herbert De Gersem</td>
</tr>
</tbody>
</table>

1. **Content**
 Basics FIT, electrostatics, magnetostatics, magnetoquasistatics, high frequency simulations, convergence studies, discretisation, time- and frequency domain simulations.

2. **Learning objectives / Learning Outcomes**
 Students learn the basic concepts of the Finite Integration Technique (FIT) for the numerical solution of Maxwell's equations. Students are, furthermore, introduced to the practical application of the method for numerical field problems.

3. **Recommended prerequisite for participation**
 Basics of Maxwell's equations, linear algebra. Recommended: Basic knowledge in knowledge in “Technical Electrodynamics”

4. **Form of examination**
 Module Final Examination:
 - Module Examination (Technical Examination, Oral Examination, Duration: 30 min, Standard Grading System)

5. **Grading**
 Module Final Examination:
 - Module Examination (Technical Examination, Oral Examination, Weighting: 100%)

6. **Usability of this module**
 BSc ETiT

7. **Grade bonus compliant to §25 (2)**

8. **References**
 Course notes, lecture slides.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1030-vl</td>
<td>Computational Electromagnetics and Applications I</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Wolfgang Ackermann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Microwave Measurement Technologies

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2090</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
German and English

Module owner
Prof. Dr.-Ing. Rolf Jakoby

Content
Introduction to microwave measurement technologies, high frequency components and their properties: rf power measurement, spectrum analysis, vector network analysis (s-parameter, x-parameter, calibration techniques), on-wafer measurements, load/source-pull, material characterization

Learning objectives / Learning Outcomes
By this module, Students will be enabled to understand the basic principles of microwave measurement technologies. They are able to use them in measurement applications. The following objectives are linked to the lecture:

- The students understand the basic features of the power measurements and the effects of a mismatch or pulsed signals and can independently carry out and interpret measurements.
- The students understand the basics of spectrum analysis and can carry out and interpret measurements independently.
- The students understand the basics of s-parameter measurements and calibration of network analyzers and can carry out and interpret measurements independently.
- Students are familiar with various methods for material characterization

Recommended prerequisite for participation
Recommended: Grundlagen der Nachrichtentechnik, Hochfrequenztechnik I

Form of examination
Module Final Examination:

- Module Examination (Technical Examination, Oral Examination, Duration: 45 min, Standard Grading System)

Grading
Module Final Examination:

- Module Examination (Technical Examination, Oral Examination, Weighting: 100%)

Usability of this module
MSc etit, MSc WI-etit, MSc iCE, MSc iST

Grade bonus compliant to §25 (2)

References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2090-vl</td>
<td>Microwave Measurement Technologies</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Rolf Jakoby</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Microwave Measurement Technologies</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Rolf Jakoby</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 Communication Technology
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2090-pr</td>
<td>Microwave Measurement Technologies Lab</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD Dr. habil. Holger Maune</td>
<td>Internship</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Robust Signal Processing With Biomedical Applications

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2090</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Dr.-Ing. Michael Muma

1. **Content**
 1. Robust Signal Processing and Learning
 - Measuring robustness
 - Robust estimation of the mean and the variance
 - Robust regression models
 - Robust filtering
 - Robust location and covariance estimation
 - Robust clustering and classification
 - Robust time-series and spectral analysis

 2. Biomedical Applications
 - Body-worn sensing of physiological parameters
 - Electrocardiogram (ECG)
 - Photoplethysmogram (PPG)
 - Eye research
 - Intracranial Pressure (ICP)
 - Algorithms for cardiac activity monitoring

 The lecture covers fundamental topics and recent developments in robust signal processing. Unlike classical signal processing, which relies strongly on the normal (Gaussian) distribution, robust methods can tolerate impulsive noise, outliers and artifacts that are frequently encountered in biomedical applications. Robust signal processing and biomedical application lectures alternate. Exercises revise the theory and apply robust signal processing algorithms to real world data.

2. **Learning objectives / Learning Outcomes**
 Students understand the basics of robust signal processing and data science and are able to apply them to a variety of problems. They are familiar with various biomedical applications and know the causes of artifacts, outliers and impulsive noise. They can apply algorithms for robust regression, cluster analysis, classification and spectral analysis.

3. **Recommended prerequisite for participation**
 Fundamental knowledge of statistical signal processing

4. **Form of examination**
 Module Final Examination:
 - Module Examination (Technical Examination, Written Examination, Duration: 180 min, Standard Grading System)

5. **Grading**
 Module Final Examination:
 - Module Examination (Technical Examination, Written Examination, Weighting: 100%)

6. **Usability of this module**
 MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST

7. **Grade bonus compliant to §25 (2)**

8. **References**

3.3 Communication Technology
A manuscript and lecture slides can be downloaded via Moodle. Further reading

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2090-vl</td>
<td>Robust Signal Processing With Biomedical Applications</td>
<td>Dr.-Ing. Michael Muma</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-zo-2090-ue</td>
<td>Robust Signal Processing With Biomedical Applications</td>
<td>Dr.-Ing. Michael Muma</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>

3.3 Communication Technology
Module name
Matrix Analysis and Computations

Module Nr.	Credit Points	Workload	Self study	Duration	Cycle offered
18-pe-2070 | 6 CP | 180 h | 120 h | 1 | SoSe

Language	Module owner
English | Prof. Dr.-Ing. Marius Pesavento

1 Content
This graduate course is a foundation class on matrix analysis and computations, which are widely used in many different fields, e.g., machine learning, computer vision, systems and control, signal and image processing, communications, networks, optimization, and many more...
Apart from the theory this course will also cover the design of efficient algorithm and it considers many different examples from the aforementioned fields including examples from social media and big data analysis, image processing and medical imaging, communication network optimization, and written text classification.
Specific topics: (i) basic matrix concepts, subspace, norms, (ii) linear least squares (iii) eigendecomposition, singular value decomposition, positive semidenite matrices, (iv) linear system of equations, LU decomposition, Cholesky decomposition (v) pseudo-inverse, QR decomposition (vi) advanced tensor decomposition, advanced matrix calculus, compressive sensing, structured matrix factorization

2 Learning objectives / Learning Outcomes
Students will learn matrix analysis and computations at an advanced or research level.

3 Recommended prerequisite for participation
Basic knowledge in linear algebra.

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Optional, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Optional, Weighting: 100%)

6 Usability of this module

7 Grade bonus compliant to §25 (2)

8 References
ECE 712 Course Notes by Prof. Jim Reilly, McMaster University, Canada (friendly notes for engineers) http://www.ece.mcmaster.ca/faculty/reilly/ece712/course_notes.htm

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2070-vl</td>
<td>Matrix Analysis and Computations</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-pe-2070-ue</td>
<td>Matrix Analysis and Computations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 Communication Technology
<table>
<thead>
<tr>
<th>Module name</th>
<th>Data Science I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>18-zo-2110</td>
</tr>
<tr>
<td>Credit Points</td>
<td>5 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Self study</td>
<td>90 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>SoSe</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
</tr>
</tbody>
</table>

1. **Content**
 - The course covers the following topics:
 - Python programming basics
 - Data science introduction
 - Data storage and formats
 - Data exploration and visualization
 - Statistical methods and inference
 - Descriptive statistics (uni & bivariate)
 - Inferential statistics
 - Feature extraction
 - Time Series Data
 - Image data
 - Audio data
 - Statistical learning
 - Cross-validation, overfitting, annotation
 - Regression
 - Classification

2. **Learning objectives / Learning Outcomes**
 - The course provides a full introduction to data science with an emphasis on hands-on examples. Students will acquire relevant knowledge of the whole data science chain: From storage/acquisition to statistical inference to visualization. It also serves as an introductory course to the Data Science project seminar.

3. **Recommended prerequisite for participation**

4. **Form of examination**
 - Module Final Examination:
 - Module Examination (Technical Examination, Written/Oral Examination, Duration: 90 min, Standard Grading System)
 - The examination takes place in form of a written exam (duration: 90 minutes). If one can estimate that less than 16 students register, the examination will be an oral examination (duration: 45 min.). The type of examination will be announced in the beginning of the lecture.

5. **Grading**
 - Module Final Examination:
 - Module Examination (Technical Examination, Written/Oral Examination, Weighting: 100%)

6. **Usability of this module**

7. **Grade bonus compliant to §25 (2)**
 - Yes

8. **References**

3.3 Communication Technology
• Lecture notes and slides can be downloaded here:
 – http://www.spg.tu-darmstadt.de
 – moodle

• Further reading:
 – Wes McKinney: Python for Data Analysis, O'Reilly, 2017
 – Christopher M. Bishop: Pattern Recognition and Machine Learning, 2011
 – James, Witten, Hastie and Tibshirani, Introduction to Statistical Learning, Springer, 2017

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-zo-2110-vl</td>
</tr>
<tr>
<td>18-zo-2110-ue</td>
</tr>
</tbody>
</table>
3.3.2 Seminars

Module name
Project Seminar Advanced \(\mu\)Wave Components & Antennas

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2060</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

Language
German and English

Module owner
Prof. Dr.-Ing. Rolf Jakoby

1 Content
Groups of 2-3 students per project. Students work out a well defined fundamental or actual research-related problem. The projects will be actualized in each cycle being offered and introduced at the beginning. Each group will be supervised individually. The projects comprises modern antennas for multitudinous applications, electronically-steerable antennas, RFIDs, RF sensors, adaptive tunable components such as matching networks, filter, passive mixer and modulator for next-generation mobile terminals and sensor systems.

2 Learning objectives / Learning Outcomes
Research-oriented Project Seminar in groups of 2-3 students per project with individual supervision. Students will learn
- how to solve scientific hardware-oriented problems
- working out concepts
- how to design, realize and characterize RF devices
- how to use commercial software and characterization tools
- to evaluate and discuss their work in the context of the state-of-art in this field
- to write a brief scientific report about their work
- to present and discuss their results at the end of the Project Seminar

3 Recommended prerequisite for participation
Fundamentals of Microwave Engineering I and Antennas and Adaptive Beamforming

4 Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 30 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100%)

6 Usability of this module
MSc ETiT, MSc iCE, Wi-ETiT

7 Grade bonus compliant to §25 (2)

8 References
Publications will be handed out to them. Software and characterization tools as well as tools to realize RF devices are available.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2060-pj</td>
<td>Project Seminar Advanced (\mu)Wave Components & Antennas</td>
<td>Project Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Rolf Jakoby, Dr.-Ing. Martin Schüssler
Module name
Project Seminar Emerging Topics in Sensor Array and Multichannel Processing

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2040</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Marius Pesavento

1 Content
This project-seminar addresses new trends in sensor array and multichannel processing with multidimensional tensor data representations. The specific thematic focus of the seminar will be adapted from year to year according to the latest trends in the research field. The topics will be announced on the course website well in advance.

2 Learning objectives / Learning Outcomes
Students will understand theory, algorithms and applications of sensor array and multichannel system.

3 Recommended prerequisite for participation
Basic knowledge in linear algebra.

4 Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 40 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100 %)

6 Usability of this module
MSc ETiT, MSc Wi-ETiT, MSc iCE

7 Grade bonus compliant to §25 (2)

8 References
References include the latest scientific publications, seminars and books.

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2040-pj</td>
<td>Project Seminar Emerging Topics in Sensor Array and Multichannel Processing</td>
<td>Project Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Marius Pesavento, M.Sc. David Schenck

3.3 Communication Technology
Module name
Project Seminar Emerging topics in MIMO Communication Networks

Module Nr. 18-pe-2050
Credit Points 8 CP
Workload 240 h
Self study 180 h
Duration 1
Cycle offered SoSe

Language English
Module owner Prof. Dr.-Ing. Marius Pesavento

1 | Content
This project-seminar addresses new trends in MIMO communications for the next generation of wireless communication systems. The specific thematic focus of the seminar will be adapted from year to year according to the latest trends in wireless communications. The topics will be announced on the course website well in advance.

2 | Learning objectives / Learning Outcomes
Students will learn the fundamental concepts, procedures, theories, algorithms and applications of Massive MIMO systems and 5G mobile communication networks by the latest scientific publications.

3 | Recommended prerequisite for participation

4 | Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 40 min, Standard Grading System)

5 | Grading
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100%)

6 | Usability of this module
MSc ETiT, MSc Wi-ETiT, MSc iCE

7 | Grade bonus compliant to §25 (2)

8 | References
References include the latest scientific publications, seminars and books.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2050-pj</td>
<td>Project Seminar Emerging Topics in MIMO Networks</td>
<td>Project Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Marius Pesavento
Module name
Project Seminar Electromagnetic CAD

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-1020</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

Language
German and English

Module owner
Prof. Dr. rer. nat. Sebastian Schöps

1 **Content**
Work on a more complex project in numerical field calculation using commercial tools or own software.

2 **Learning objectives / Learning Outcomes**
Students will be able to simulate complex engineering problems with numerical field simulation software. They are able to estimate modelling and numerical errors. They know how to present the results on a scientific level in talks and a paper. Students are able to organize teamwork.

3 **Recommended prerequisite for participation**
Good understanding of electromagnetic fields, knowledge about numerical simulation methods.

4 **Form of examination**
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 20 min, Standard Grading System)

5 **Grading**
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100 %)

6 **Usability of this module**
MSc ETiT

7 **Grade bonus compliant to §25 (2)**

8 **References**
Course notes “Computational Electromagnetics and Applications I-III”, further material is provided.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-1020-pj</td>
<td>Project Seminar Electromagnetic CAD</td>
<td>Project Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. rer. nat. Sebastian Schöps
Module name
Signal Detection and Parameter Estimation

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2050</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
</tr>
</tbody>
</table>

Content
Signal detection and parameter estimation are fundamental signal processing tasks. In fact, they appear in many common engineering operations under a variety of names. In this course, the theory behind detection and estimation will be presented, allowing a better understanding of how (and why) to design “good” detection and estimation schemes.

These lectures will cover:
- Fundamentals
- Detection Theory
- Hypothesis Testing
- Bayesian Tests
- Ideal Observer Tests
- Neyman-Pearson Tests
- Receiver Operating Characteristics
- Uniformly Most Powerful Tests
- The Matched Filter Estimation Theory
- Types of Estimators
- Maximum Likelihood Estimators
- Sufficiency and the Fisher-Neyman/Factorisation Criterion
- Unbiasedness and Minimum variance
- Fisher Information and the CRB
- Asymptotic properties of the MLE

Learning objectives / Learning Outcomes
Students gain deeper knowledge in signal processing based on the fundamentals taught in DSP and EiT 4. They will study advanced topics of statistical signal processing in the area of detection and estimation. In a sequence of 4 lectures, the basics and important concepts of detection and estimation theory will be taught. These will be studied in depth by implementation of the methods in MATLAB for practical examples. In sequel, students will perform an independent literature research, i.e. choosing an original work in detection and estimation theory which they will illustrate in a final presentation. This will support the students with the ability to work themselves into a topic based on literature research and to adequately present their knowledge. This is especially expected in the scope of the students’ future research projects or in their professional career.

Recommended prerequisite for participation
DSP, general interest in signal processing

Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Optional, Standard Grading System)

Grading
Module Final Examination:
- Module Examination (Study Achievement, Optional, Weighting: 100 %)

Usability of this module
MSc EiT, MSc iST, MSc iCE, Wi-EiT

Grade bonus compliant to §25 (2)

References
3.3 Communication Technology
- Lecture slides

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2050-se</td>
<td>Signal Detection and Parameter Estimation</td>
<td>Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Advanced Topics in Statistical Signal Processing

Module Nr. 18-zo-2040
Credit Points 8 CP
Workload 240 h
Self study 180 h
Duration 1
Cycle offered WiSe

Language English
Module owner Prof. Dr.-Ing. Abdelhak Zoubir

1 Content
This course extends the signal processing fundamentals taught in DSP towards advanced topics that are the subject of current research. It is aimed at those with an interest in signal processing and a desire to extend their knowledge of signal processing theory in preparation for future project work (e.g. Diplomarbeit) and their working careers. This course consists of a series of five lectures followed by a supervised research seminar during two months approximately. The final evaluation includes students seminar presentations and a final exam.

The main topics of the Seminar are:
 • Estimation Theory
 • Detection Theory
 • Robust Estimation Theory
 • Seminar projects: e.g. Microphone array beamforming, Geolocation and Tracking, Radar Imaging, Ultrasound Imaging, Acoustic source localization, Number of sources detection.

2 Learning objectives / Learning Outcomes
Students obtain advanced knowledge in signal processing based on the fundamentals taught in DSP and ETiT 4. They will study advanced topics in statistical signal processing that are subject to current research. The acquired skills will be useful for their future research projects and professional careers.

3 Recommended prerequisite for participation
DSP, general interest in signal processing is desirable.

4 Form of examination
Module Final Examination:
 • Module Examination (Study Achievement, Optional, Standard Grading System)

5 Grading
Module Final Examination:
 • Module Examination (Study Achievement, Optional, Weighting: 100%)

6 Usability of this module
MSc ETiT, BSc/MSc iST, MSc iCE, Wi-ETiT

7 Grade bonus compliant to §25 (2)

8 References
 • S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Book 1), Detection Theory (Book 2).

Courses
Course Nr. 18-zo-2040-se
Course name Advanced Topics in Statistical Signal Processing
Instructor Prof. Dr.-Ing. Abdelhak Zoubir
Type Seminar
SWS 4
Module name
Robust and Biomedical Signal Processing

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2100</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
</tr>
</tbody>
</table>

1 Content
A series of 3 lectures provides the necessary background on robust signal processing and machine learning:

- Background on robust signal processing
- Robust regression and robust filters for artifact cancellation
- Robust location and covariance estimation and classification

They are followed by two lectures on selected biomedical applications, such as:

- Body-worn sensing of physiological parameters
- Optical heart rate sensing (PPG)
- Signal processing for the electrocardiogram (ECG)
- Biomedical image processing

Students then work in groups to apply robust signal processing algorithms to real-world biomedical data. Depending on the application, the data is either recorded by the students, or provided to them. The group results are presented during a 20-minute presentation. The final assessment is based on the presentation and an oral examination.

2 Learning objectives / Learning Outcomes

3 Recommended prerequisite for participation
Fundamental knowledge of statistical signal processing

4 Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 30 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100%)

6 Usability of this module
MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST

7 Grade bonus compliant to §25 (2)

8 References
- Slides can be downloaded via Moodle.

Further reading:
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2100-se</td>
<td>Robust and Biomedical Signal Processing</td>
</tr>
<tr>
<td>Instructor</td>
<td>Type</td>
</tr>
<tr>
<td>Dr.-Ing. Michael Muma</td>
<td>Seminar</td>
</tr>
<tr>
<td></td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Data Science II

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2120</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Abdelhak Zoubir

1. **Content**
The course covers the following topics:
- Data Science Advanced Methods
- Data Management + Big data frameworks
- Statistical Learning
 - Recommender Systems
 - Deep Learning
 - Unsupervised Learning
 - Text data analysis
- Final application project. Flexibility to choose from list of projects or come up with own project.
 Examples:
 - Sound classification
 - Heart rate analysis
 - Activity recognition with acceleration data
 - Hyperspectral data
 - Image classification
 - Health survey

2. **Learning objectives / Learning Outcomes**
This seminar provides an advanced understanding of data science with an emphasis on hands-on projects. Students will get to know latest data science technologies – from big data to advanced machine learning and apply them in a real-world project.

3. **Recommended prerequisite for participation**
Data Science I (Lecture)

4. **Form of examination**
Module Final Examination:
- Module Examination (Study Achievement, Written/Oral Examination, Duration: 90 min, Standard Grading System)
In general, the examination takes place in form of a written exam (duration: 90 minutes). If up to 14 students register, there will be an oral examination (duration: 45 min.). The type of examination will be announced in the first lecture. Possible types include a project presentation, etc.

5. **Grading**
Module Final Examination:
- Module Examination (Study Achievement, Written/Oral Examination, Weighting: 100%)

6. **Usability of this module**

7. **Grade bonus compliant to §25 (2)**

8. **References**

3.3 Communication Technology
Lecture notes and slides can be downloaded here:
- http://www.spg.tu-darmstadt.de
- Moodle platform

Further reading:
- Wes McKinney: Python for Data Analysis, O'Reilly, 2017
- Christopher M. Bishop: Pattern Recognition and Machine Learning, 2011
- James, Witten, Hastie and Tibshirani, Introduction to Statistical Learning, Springer, 2017

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2120-se</td>
<td>Data Science II</td>
<td>Dr.-Ing. Christian Debes</td>
<td>Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Artificial Intelligence in Medicine Challenge

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ha-2010</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Christoph Hoog Antink

1 Content
Within this module, students will work independently in small groups on a given problem from the realm of artificial intelligence (AI) in medicine. The nature of the problem can be the automatic classification or prediction of a disease from medical signals or data, the extraction of a physiological parameter, etc. All groups will be given the same problem but will have to develop their own algorithms, which will be evaluated on a hidden dataset. In the end, a ranking of the best-performing algorithms is provided.

2 Learning objectives / Learning Outcomes
Within this module, students will work independently in small groups on a given problem from the realm of artificial intelligence (AI) in medicine. The nature of the problem can be the automatic classification or prediction of a disease from medical signals or data, the extraction of a physiological parameter, etc. All groups will be given the same problem but will have to develop their own algorithms, which will be evaluated on a hidden dataset. In the end, a ranking of the best-performing algorithms is provided.

3 Recommended prerequisite for participation
- Basic programming skills in Python
- 18-zo-1030 Fundamentals of Signal Processing

4 Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Written/Oral Examination, Standard Grading System)
Report and/or Presentation. The type of examination will be announced in the beginning of the lecture.

5 Grading
Module Final Examination:
- Module Examination (Study Achievement, Written/Oral Examination, Weighting: 100%)

6 Usability of this module
BSc/MSc (WI-)etit, AUT, DT, KTS
BSc/MSc iST
MSc iCE

7 Grade bonus compliant to §25 (2)

8 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ha-2010-pj</td>
<td>Artificial Intelligence in Medicine Challenge</td>
<td>Prof. Dr.-Ing. Christoph Hoog Antink</td>
<td>Project Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

3.3 Communication Technology
3.3.3 Laboratories

<table>
<thead>
<tr>
<th>Module name</th>
<th>Digital Signal Processing Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>18-zo-2030</td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Self study</td>
<td>135 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
</tr>
</tbody>
</table>

1 Content
1) Introduction to MATLAB
2) Discrete-Time Signals and Systems
3) Frequency-Domain Analysis using the DFT
4) Digital FIR Filter Design
5) IIR Filter Design using Analog Prototypes
6) Nonparametric Spectrum Estimation
7) Parametric Spectrum Estimation.

2 Learning objectives / Learning Outcomes
The students are able to apply skills acquired in the course Digital Signal Processing. These include the design of digital FIR and IIR filters as well as non-parametric and parametric spectrum estimation. Students learn how MATLAB is used to apply theoretical concepts and to demonstrate signal processing techniques by using hands-on application examples.

3 Recommended prerequisite for participation
Deterministic signals and systems theory.

4 Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Written Examination, Duration: 120 min, Standard Grading System)
- Exam (Duration: 120 min) and a Report (Lab Reports), Details will be announced at the beginning of the lecture.

5 Grading
Module Final Examination:
- Module Examination (Study Achievement, Written Examination, Weighting: 100%)

6 Usability of this module
MSc ETiT, MSc iCE

7 Grade bonus compliant to §25 (2)

8 References
Lab manual

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2030-pr</td>
<td>Digital Signal Processing Lab</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>
Module name
Software Lab Computational Electromagnetics and Applications I

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-1010</td>
<td>8 CP</td>
<td>240 h</td>
<td>195 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. rer. nat. Sebastian Schöps

Content

Learning objectives / Learning Outcomes
Students will understand basic concepts of numerical solution techniques to field problems related to different physical domains. They will exhibit the ability to write small simulation programs in Matlab.

Recommended prerequisite for participation
Recommended: “Computational Electromagnetics and Applications” (also in parallel).

Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 20 min, Standard Grading System)

Grading
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100%)

Usability of this module
BSc ETiT, MSc ETiT, BSc CE

References
Course notes will be provided.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-1010-pr</td>
<td>Software Lab Computational Electromagnetics and Applications I</td>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. rer. nat. Sebastian Schöps

3.3 Communication Technology
3.4 Communication Systems

3.4.1 Lectures

<table>
<thead>
<tr>
<th>Module name</th>
<th>Acoustics I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>18-se-2010</td>
</tr>
<tr>
<td>Credit Points</td>
<td>3 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Self study</td>
<td>60 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>WiSe</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. (em.) Dr. Gerhard Sessler</td>
</tr>
</tbody>
</table>

Content
1. Basic concepts of vibrations; impedance; electromechanical analogues,
2. Sound field: wave equation; plane waves; sound absorption and dispersion; room absorption,
3. Sound radiation: spherical, dipole, and cardioid source; linear arrays; circular piston membrane,
4. Physiological and psychological acoustics: hearing organ; acoustic perception; speech production and speech intelligibility,
5. Electroacoustic transducers; reciprocity relations; electrostatic, piezoelectric, electrodynamic, and other transducers; directional microphones; microphone calibration,
6. Acoustic measuring methods: measurements of fundamental acoustic quantities; acoustic testing chambers; vibration measurements,
7. Analogical and digital sound recording: digital and analogical disc and magnetic tape methods; movie sound,
8. Ultrasound and hypersonic sound: generation and detection; applications

Learning objectives / Learning Outcomes
After completion of the lecture, students possess:
- the understanding of basic phenomena of generation, propagation, reception, storage and reproduction of sound;
- the ability to analyze acoustic components and systems;
- the ability to judge and design applications in the audio and ultrasonic frequency ranges.

Recommended prerequisite for participation
Electrical Engineering I and II, Mathematics I to IV, Physics, Basics of Telecommunication

Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Oral Examination, Duration: 30 min, Standard Grading System)

Grading
Module Final Examination:
- Module Examination (Technical Examination, Oral Examination, Weighting: 100%)

Usability of this module
MSc ETiT

Grade bonus compliant to §25 (2)

References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-se-2010-vl</td>
<td>Acoustics I</td>
</tr>
</tbody>
</table>

Instructor
Prof. (em.) Dr. Gerhard Sessler, Prof. Dr. Mario Kupnik

<table>
<thead>
<tr>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Information Theory I

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-1010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Language

<table>
<thead>
<tr>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. techn. Heinz Köppl</td>
</tr>
</tbody>
</table>

Content

This lecture course introduces the fundamentals of information and network information theory. Outline:

- Information, uncertainty, entropy, mutual information, capacity, differential entropy, typical sequences,
- Gaussian channels, basics of source and channel coding, linear block codes, Shannon's source coding theorem, Shannon's channel coding theorem, capacity of Gaussian channels, capacity of bandlimited channels, Shannon's bound, bandwidth efficiency, capacity of multiple parallel channels and waterfilling, Gaussian vector channel, Multiple Access Channel, Broadcast Channel, rate region...

Learning objectives / Learning Outcomes

Students will understand the fundamentals of classic information theory.

Recommended prerequisite for participation

Knowledge of basic communication theory and probability theory.

Form of examination

Module Final Examination:

- Module Examination (Technical Examination, Written Examination, Duration: 120 min, Standard Grading System)

Grading

Module Final Examination:

- Module Examination (Technical Examination, Written Examination, Weighting: 100 %)

Usability of this module

BSc ETiT, BSc iST, MSc iCE, BSc Wi-ETiT, BSc/MSc CE

Grade bonus compliant to §25 (2)

References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-1010-vl</td>
<td>Information Theory I</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-kp-1010-ue</td>
<td>Information Theory I</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>

3.4 Communication Systems
Module name
Information Theory II

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
</tr>
</tbody>
</table>

1. **Content**
 This lecture course is devoted to advances of network information theory. Outline: overview of Shannon capacity, outage and ergodic capacity, capacity of channels with state, capacity of Gaussian vector channels, capacity regions of multi-user channels, capacity regions of multiple-access and broadcast fading channels, interference channel, relay channel, multiuser bounds, multi-user diversity, wiretap channel, secrecy rate and physical layer security.

2. **Learning objectives / Learning Outcomes**
 Students will understand advanced concepts and strategies in network information theory.

3. **Recommended prerequisite for participation**
 Knowledge of basic communication theory.

4. **Form of examination**
 Module Final Examination:
 - Module Examination (Technical Examination, Optional, Standard Grading System)

5. **Grading**
 Module Final Examination:
 - Module Examination (Technical Examination, Optional, Weighting: 100%)

6. **Usability of this module**
 MSc ETiT, BSc iST, MSc Wi-ETiT, MSc iCE, BSc/MSc CE

7. **Grade bonus compliant to §25 (2)**

8. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2010-vl</td>
<td>Information Theory II</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2010-ue</td>
<td>Information Theory II</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
MIMO - Communication and Space-Time-Coding

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2030</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Marius Pesavento

1 Content
This lecture course introduces the principles of space-time and multiple-input multiple-output (MIMO) communications.
Outline: Motivation and background; overview of space-time and MIMO communications; fading MIMO channel models, MIMO information theory, receive and transmit diversity; channel estimation, MIMO detectors, Alamouti space-time block code, orthogonal space-time block codes; linear dispersion codes; coherent and non-coherent decoders, differential space-time block coding; MIMO with limited feedback, Multiantenna- and multiuser diversity, BER performance analysis, MIMO in moden wireless communication networks, multicell and multiuser MIMO (coordinated multipoint).

2 Learning objectives / Learning Outcomes
Students will understand modern MIMO communications and existing space-time coding techniques.

3 Recommended prerequisite for participation
Knowledge of basic communication theory and basic information theory.

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Optional, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Optional, Weighting: 100%)

6 Usability of this module
MSc ETiT

7 Grade bonus compliant to §25 (2)

8 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2030-vl</td>
<td>MIMO - Communication and Space-Time-Coding</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Mobile Communications

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Anja Klein

1 Content
The lecture covers aspects of mobile communication systems with particular focus on the physical layer. Mobile radio systems, services, market, standardization duplex and multiple access techniques, cellular concept mobile radio channel, deterministic and stochastic description modulation schemes code division multiple access (CDMA) orthogonal frequency division multiplexing (OFDM) optimum and suboptimum receiver techniques cellular radio capacity and spectrum efficiency diversity methods multiple input multiple output (MIMO) systems power control and handover architecture of mobile radio systems

2 Learning objectives / Learning Outcomes
After completion of the lecture, students possess
• a profound understanding of physical layer aspects, e.g., transmission schemes, multiple access schemes of mobile communication systems, duplex schemes, multi carrier schemes, receiver techniques, multi antenna schemes
• a profound understanding of signal propagation in mobile radio systems (mobile radio channel)
• the ability to understand and solve problems of the field of the physical layer
• the ability to compare, analyse and evaluate different system concepts
• knowledge on modelling of the transmission properties of the mobile radio channel

3 Recommended prerequisite for participation
Deterministic Signals and Systems, Communication Technology I, Mathematics I to IV

4 Form of examination
Module Final Examination:
• Module Examination (Technical Examination, Written Examination, Duration: 90 min, Standard Grading System)

5 Grading
Module Final Examination:
• Module Examination (Technical Examination, Written Examination, Weighting: 100 %)

6 Usability of this module
MSc ETIT, MSc Wi-ETiT, MSc CE, MSc iCE, MSc iST, MSc MEC

7 Grade bonus compliant to §25 (2)

8 References
will be announced in the lecture

Courses

3.4 Communication Systems
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2020-vl</td>
<td>Mobile Communications</td>
<td>Prof. Dr.-Ing. Anja Klein</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-kl-2020-ue</td>
<td>Mobile Communications</td>
<td>Prof. Dr.-Ing. Anja Klein</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Microwave Measurement Technologies

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2090</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
German and English

Module owner
Prof. Dr.-Ing. Rolf Jakoby

1 Content
Introduction to microwave measurement technologies, high frequency components and their properties: rf power measurement, spectrum analysis, vector network analysis (s-parameter, x-parameter, calibration techniques), on-wafer measurements, load/source-pull, material characterization

2 Learning objectives / Learning Outcomes
By this module, Students will be enabled to understand the basic principles of microwave measurement technologies. They are able to use them in measurement applications. The following objectives are linked to the lecture:

- The students understand the basic features of the power measurements and the effects of a mismatch or pulsed signals and can independently carry out and interpret measurements.
- The students understand the basics of spectrum analysis and can carry out and interpret measurements independently.
- The students understand the basics of s-parameter measurements and calibration of network analyzers and can carry out and interpret measurements independently.
- Students are familiar with various methods for material characterization

3 Recommended prerequisite for participation
Recommended: Grundlagen der Nachrichtentechnik, Hochfrequenztechnik I

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Oral Examination, Duration: 45 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Oral Examination, Weighting: 100%)

6 Usability of this module
MSc etit, MSc WI-etit, MSc iCE, MSc iST

7 Grade bonus compliant to §25 (2)

8 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2090-vl</td>
<td>Microwave Measurement Technologies</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-jk-2090-ue</td>
<td>Microwave Measurement Technologies</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Rolf Jakoby

3.4 Communication Systems
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2090-pr</td>
<td>Microwave Measurement Technologies Lab</td>
<td>PD Dr. habil. Holger Maune</td>
<td>Internship</td>
<td>1</td>
</tr>
</tbody>
</table>

3.4 Communication Systems
Module name
Convex Optimization in Signal Processing and Communications

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Marius Pesavento

1 Content
This graduate course introduces the basic theory of convex optimization and illustrates its use with many recent applications in communication systems and signal processing.
Outline: Introduction, convex sets and convex functions, convex problems and classes of convex problems (LP, QC, SOCP, SDF, GP), Lagrange duality and KKT conditions, basics of numerical algorithms and interior point methods, optimization tools, convex inner and outer approximations for non convex problems, sparse optimization, distributed optimization, mixed integer linear and non-linear programming, applications.

2 Learning objectives / Learning Outcomes
Students will learn the basic theory of convex optimization and its applications.

3 Recommended prerequisite for participation
Knowledge in linear algebra and the basic concepts of signal processing and communications.

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written/Oral Examination, Duration: 120 min, Standard Grading System)
The examination takes place in form of a written exam (duration: 120 minutes). If one can estimate that less than 14 students register, the examination will be an oral examination (duration: 20 min.). The type of examination will be announced in the beginning of the lecture.

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Written/Oral Examination, Weighting: 100 %)

6 Usability of this module
MSc ETiT

7 Grade bonus compliant to §25 (2)

8 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2020-vl</td>
<td>Convex Optimization in Signal Processing and Communications</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2020-ue</td>
<td>Convex Optimization in Signal Processing and Communications</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-pe-2020-pr</td>
<td>Convex Optimization in Signal Processing and Communications Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Internship</td>
<td>1</td>
</tr>
</tbody>
</table>
1 Content
This lecture course introduces the principles of modern sensor array processing and adaptive beamforming. Outline: Motivation and background; applications, narrowband and wideband signal model
Direction-of-arrival estimation (DoA):
Traditional methods based on beamforming, super resolution methods, Maximum-Likelihood methods, Subspace based methods, MUSIC, ESPRIT, MODE, root-MUSIC, multidimensional source localization, beamspace processing, array interpolation, partly calibrated arrays, wideband DOA estimation, spatial smoothing, forward-backward averaging, redundancy averaging, correlated sources, minimum redundancy arrays, compressed sensing and sparse reconstruction based DoA estimation, performance bounds
Adaptive beamforming:

2 Learning objectives / Learning Outcomes
Students will standard and modern sensor array processing techniques for source localization and transmit/receive beamforming.

3 Recommended prerequisite for participation
Knowledge in linear algebra.

4 Form of examination
Module Final Examination:
• Module Examination (Technical Examination, Optional, Standard Grading System)

5 Grading
Module Final Examination:
• Module Examination (Technical Examination, Optional, Weighting: 100 %)

6 Usability of this module
BSc / MSc etit, BSc / MSc WI-etit, MSc MEC, MSc iST , MSc iCE

7 Grade bonus compliant to §25 (2)

8 References
 – Chapter 12 - Adaptive and Robust Beamforming, Sergiy A. Vorobyov, Pages 503-552
 – Chapter 14 - DOA Estimation Methods and Algorithms, Pei-Jung Chung, Mats Viberg, Jia Yu, Pages 599-650
 – Chapter 15 - Subspace Methods and Exploitation of Special Array Structures, Martin Haardt, Marius Pesavento, Florian Roemer, Mohammed Nabil El Korso, Pages 651-717
• Spectral Analysis of Signals, Petre Stoica, Randolph Moses, Prentice Hall, April 2005

Courses

3.4 Communication Systems
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2060-vl</td>
<td>Sensor Array Processing and Adaptive Beamforming</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-pe-2060-ue</td>
<td>Sensor Array Processing and Adaptive Beamforming</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>

3.4 Communication Systems
Module name
Machine Learning in Information and Communication Technology (ICT)

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-2110</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. techn. Heinz Köppl

Content
The module provides an introduction to the emerging field of machine learning from an engineering perspective. Important models and learning methods are presented and exemplified through problems from information and communication technology.

- Fundamentals of probability theory and multivariate statistics
- Taxonomy of machine learning problems and models (supervised, unsupervised, generative, discriminative)
- Regression and classification: theory, methods and ICT applications
- Dimensionality reduction, clustering and big data analytics: methods and application in communications and signal processing
- Probabilistic graphical models: categories, inference and parameter estimation
- Fundamentals of Bayesian inference, Monte Carlo methods, Bayesian non-parametrics
- Fundamentals of convex optimization: Solution methods and application in communications
- Approximate algorithms for scalable Bayesian inference; application in signal processing and information theory (e.g. decoding of LDPC codes)
- Hidden Markov models (HMM): Theory, Algorithms and ICT applications (e.g. Viterbi decoding of convolutional codes)
- High-dimensional statistics ("large p small n" setting), learning dependency structure in high-dimensional data, learning causality relations from observational data.
- Sparse estimation, random projections, compressive sensing: Theory and applications in signal processing
- Deep neural networks (deep learning): Models, learning algorithms, libraries and ICT applications

Learning objectives / Learning Outcomes
Students are able to interpret and categorize specific engineering problems from the ICT domain in terms of machine learning problems.
They are able to reduce such problems to standard machine learning problems and are able to determine suitable solution methods for them.
They are able to implement all necessary algorithms from scratch, but they are also familiar with the state-of-the-art libraries in machine learning.
They are able to determine the involved computational complexity of a method and choose an appropriate solution algorithms based on application constraints.
They are able to apply the acquired methods to other domains, such as data analysis in biomedical engineering, analysis of social network data, etc.

Recommended prerequisite for participation
Good command of Matlab (for instance knowledge from course 18-st-2030 Matlab Grundkurs) and engineering mathematics

Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Optional, Standard Grading System)

Grading
Module Final Examination:
- Module Examination (Technical Examination, Optional, Weighting: 100 %)

Usability of this module
MSc etit, BSc/MSc iST, MSc iCE, MSc CE

3.4 Communication Systems
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-2110-vl</td>
<td>Machine Learning in Information and Communication Technology (ICT)</td>
<td>Prof. Dr. techn. Heinz Köppl, Prof. Dr.-Ing. Anja Klein</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-kp-2110-pr</td>
<td>Machine Learning in Information and Communication Technology (ICT) Lab</td>
<td>Prof. Dr. techn. Heinz Köppl, Prof. Dr.-Ing. Anja Klein</td>
<td>Internship</td>
<td>1</td>
</tr>
<tr>
<td>18-kp-2110-ue</td>
<td>Machine Learning in Information and Communication Technology (ICT)</td>
<td>Prof. Dr. techn. Heinz Köppl, Prof. Dr.-Ing. Anja Klein</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Graph signal processing, learning and optimization

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2080</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Marius Pesavento

1 Content
The course covers the following topics:
- Motivation, Applications
- Fundamentals
 - definition of graphs, classes of graphs, properties of graphs, signals defined over graphs
 - Adjacency matrix, Graph Laplacian, Graph shift operator
 - Covariance matrix, conditional dependence, precision matrix
- Graph signal processing
 - Consensus, Diffusion
 - Graph spectral analysis, Graph Fourier Transform
 - Total variational norm, Graph Frequencies
 - Bandlimited graph signals, smoothness
 - Graph filters, Graph sampling theorem
 - Applications
- Network topology inference
 - Link prediction
 - Association network inference
 - Tomographic network topology inference
 - Pearson product-moment correlation
 - Causality, Partial correlation
 - Conditional independence graph
 - Gaussian Markov Random Fields
 - Graphical LASSO, Graphical LASSO with Laplacian constraint
 - Applications
- Graph analysis
 - Subgraph identification
 - Cliques identification
- Optimization over graphs
 - Average consensus, diffusion, exact diffusion
 - Gradient tracking, push-sum algorithm, etc.
 - Applications
- Graph neuronal (convolutional) network

2 Learning objectives / Learning Outcomes
Graph signal processing (i.e., processing of signals defined over graphs) and network analysis form an interdisciplinary research area with many diverse applications. The course provides a systematic introduction to the theory of graph signal processing, graphical network analysis, graph topology learning, optimization over graphs and learning with graph neuronal networks. In this course the students will learn the main concepts, algorithms and application areas that are fundamental in graph signal processing.

3 Recommended prerequisite for participation
Basic knowledge in linear algebra and matrix analysis.

4 Form of examination
Module Final Examination:
• Module Examination (Technical Examination, Written/Oral Examination, Duration: 120 min, Standard Grading System)

In general, the examination takes place in form of a written exam (duration: 120 minutes). If up to 20 students register in semesters in which the lecture does not take place, there will will be an oral examination (duration: 20 min.). The type of examination will be announced within one working weeks after the end of the examination registration phase.

5 Grading
Module Final Examination:
• Module Examination (Technical Examination, Written/Oral Examination, Weighting: 100%)

6 Usability of this module

7 Grade bonus compliant to §25 (2)

8 References
• Lecture notes and slides can be downloaded here:
 – www.nts.tu-darmstadt.de
 – moodle

• Further reading:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2080-vl</td>
<td>Graph signal processing, learning and optimization</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-pe-2080-ue</td>
<td>Graph signal processing, learning and optimization</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Automated Driving

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2110</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
</tr>
</tbody>
</table>

Content
- History of Automated Driving
- Terminology and Paths towards Automated Driving
- Architectures, Building Blocks, and Components
- Perception & Environment Models
- Data Fusion & State Estimation
 - Deep Dive: Target Tracking & Traffic Participant Fusion
 - Deep Dive: Grid Fusion & Free Space Estimation
 - Deep Dive: Road Model Fusion
- Localization, Digital Maps, and Vehicle-To-X Communication
- Situation Understanding, Prediction, and Criticality Assessment
 - Deep Dive: Probabilistic Driving Maneuver Detection
- Behavior & Trajectory Planning, Decision Making
- Automated Driving Software Development & Test
- Open Challenges & State-of-the-Art Research Topics

Learning objectives / Learning Outcomes
After visiting the lecture, the student
- is familiar with the history and terminology of automated driving systems,
- knows important architectures, building blocks, and components of automated vehicles,
- understands different perception, environment model, and data fusion approaches,
- has an idea about relevant methods (e.g. Bayesian Inference & Probabilistic Graphical Models, State Estimation, Deep Learning, Dempster-Shafer Theory) and knows how they can be beneficially applied in different of automated driving areas (e.g. detection, target tracking & traffic participant fusion, grid fusion, road model fusion, localization),
- is familiar with the challenges of situation understanding, prediction, and criticality assessment and knows exemplary methods to tackle the problem,
- is aware of exemplary behavior & trajectory planning approaches,
- knows best practices about automated driving software development & test (e.g. continuous integration, verification & validation, test-driven development, key performance indicators), and
- is familiar with open challenges and research topics.

Recommended prerequisite for participation

Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Duration: 90 min, Standard Grading System)

Grading
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Weighting: 100%)

Usability of this module
Msc etit, Msc MEC, Msc Wi-etit, Msc ICE, Msc CE, Msc Informatik
7 Grade bonus compliant to §25 (2)

8 References
Own lecture slides are distributed in advance of any lecture. For more detailed insights into the topic area, the following books can be recommended:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2110-vl</td>
<td>Automated Driving</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
3.4.2 Seminars

Module name
International Summer School 'Microwaves and Lightwaves'

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-2020</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. rer. nat. Sascha Preu

1 **Content**

This summer school covers the fundamentals and the latest developments of microwave electronics, THz technology, and optical communication systems with particular focus on the physical concepts involved.

2 **Learning objectives / Learning Outcomes**

Students understand the presented research topics, e.g.
- topics of microwave engineering, THz engineering, and optical communications
- of related electronics
- the influence of the relevant properties of materials and of waveguides on signal processing.

They gain inside into the latest developments in these fields.

3 **Recommended prerequisite for participation**

4 **Form of examination**

Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 30 min, Standard Grading System)

5 **Grading**

Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100%)

6 **Usability of this module**

BSc ETIT, MSc ETIT

7 **Grade bonus compliant to §25 (2)**

8 **References**

A script (English) will be distributed or slides can be downloaded.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-2020-se</td>
<td>International Summer School “Microwaves and Lightwaves”</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. rer. nat. Sascha Preu, Prof. Dr.-Ing. Rolf Jakoby
Module name
Project Seminar Wireless Communications

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2040</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Anja Klein</td>
</tr>
</tbody>
</table>

Content
- Solving special Problems concerning mobile communications (problems concerning signal transmission and processing as well as problems concerning the network are possible, topics will be defined out of the current research topics of the lab),
- working on the project in teams together (2-3 students)
- organizing and structuring of a project
- dealing with scientific publications, reading up the theoretical background of the task
- practical work on a complex task
- scientific presentation of the results (report/presentation)
- defending the work in an oral discussion including an audience

Learning objectives / Learning Outcomes
After completion of the course, students possess
- the ability to classify and analyze special problems concerning mobile communications,
- the knowledge to plan and organize projects with temporal limitation,
- the capability to setup and test methodologies for analysis and simulation- environments,
- skills to evaluate and present achieved results and achieved conclusions.

Recommended prerequisite for participation
Previous knowledge in digital communications, signal processing, mobile radio

Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Duration: 20 min, Standard Grading System)

Grading
Module Final Examination:
- Module Examination (Study Achievement, Oral Examination, Weighting: 100 %)

Usability of this module
MSc ETiT, MSc Wi-ETiT, MSc CE, MSc iCE, MSc iST, MSc MEC

References
Lecture documentation will be provided and specific literature will be announced during the course.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2040-pj</td>
<td>Project Seminar Wireless Communications</td>
<td>Project Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Anja Klein, M.Sc. Sumedh Dongare

3.4 Communication Systems
Module name
Artificial Intelligence in Medicine Challenge

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ha-2010</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Christoph Hoog Antink

1 Content
Within this module, students will work independently in small groups on a given problem from the realm of artificial intelligence (AI) in medicine. The nature of the problem can be the automatic classification or prediction of a disease from medical signals or data, the extraction of a physiological parameter, etc. All groups will be given the same problem but will have to develop their own algorithms, which will be evaluated on a hidden dataset. In the end, a ranking of the best-performing algorithms is provided.

2 Learning objectives / Learning Outcomes
Within this module, students will work independently in small groups on a given problem from the realm of artificial intelligence (AI) in medicine. The nature of the problem can be the automatic classification or prediction of a disease from medical signals or data, the extraction of a physiological parameter, etc. All groups will be given the same problem but will have to develop their own algorithms, which will be evaluated on a hidden dataset. In the end, a ranking of the best-performing algorithms is provided.

3 Recommended prerequisite for participation
- Basic programming skills in Python
- 18-zo-1030 Fundamentals of Signal Processing

4 Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Written/Oral Examination, Standard Grading System)
Report and/or Presentation. The type of examination will be announced in the beginning of the lecture.

5 Grading
Module Final Examination:
- Module Examination (Study Achievement, Written/Oral Examination, Weighting: 100%)

6 Usability of this module
BSc/MSc (WI-)etit, AUT, DT, KTS
BSc/MSc iST
MSc iCE

7 Grade bonus compliant to §25 (2)

8 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ha-2010-pj</td>
<td>Artificial Intelligence in Medicine Challenge</td>
<td>Prof. Dr.-Ing. Christoph Hoog Antink</td>
<td>Project Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
3.4.3 Laboratories

<table>
<thead>
<tr>
<th>Module name</th>
<th>Laboratory Communication and Sensor Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>18-kt-2010</td>
</tr>
<tr>
<td>Credit Points</td>
<td>5 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Self study</td>
<td>105 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>German and English</th>
</tr>
</thead>
</table>

| **Module owner** | Prof. Dr.-Ing. Rolf Jakoby |

1 Content
The student communications lab consist of 7 fundamental experiments out of the field of Communication Engineering:
- Mobile Radio Channel + Diversity (SW)
- Signal Detection and Parameter Estimation (Matlab)
- Digital Modulation (HW)
- Coding (SW)
- Parasitic Effects in Passive RF Devices (SW)
- RF FET Amplifier (HW)
- Polarization of Light (HW)
- **Antennas:**
 - Fields and Impedance (HW)

2 Learning objectives / Learning Outcomes
The students are guided to acquaint themselves with given topics. They learn to perform prepared experiments within a defined frame and minute, analyze and discuss the results. In this training the fundamentals of free scientific work are practiced.

3 Recommended prerequisite for participation
Fundamentals of:
- Communications
- Microwave Engineering
- Digital Signal Processing

4 Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Optional, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Study Achievement, Optional, Weighting: 100%)

6 Usability of this module
MSc ETiT, MSc iCE, Wi-ETiT

7 Grade bonus compliant to §25 (2)

8 References
A description of experiments is offered. It can be bought from Mr. Ziemann (S306/409) or being loaded from the WEB page.

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kt-2010-pr</td>
<td>Laboratory Communication and Sensor Systems</td>
</tr>
</tbody>
</table>

Instructor

Prof. Dr.-Ing. Rolf Jakoby, Prof. Dr.-Ing. Anja Klein, Dr.-Ing. Martin Schüßler, Prof. Dr.-Ing. Abdelhak Zoubir, Prof. Dr.-Ing. Marius Pesavento, Prof. Dr. rer. nat. Sascha Preu, Prof. Dr.-Ing. Herbert De Gersem

<table>
<thead>
<tr>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>
Module name
Communication Networks IV

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2030</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Ralf Steinmetz

1 Content
The lecture communication networks IV deals with modelling and performance evaluation of computer networks and communication systems. The emphasis is on current analytical approaches. Owing to these methods a fundamental understanding of major performance related aspects in networking is achieved and basic knowledge for planning, optimization and advancement of communications networks is provided. The relevance and implications of individual theories are illustrated using examples which are drawn mainly from the Internet. Apart from analytical methods the lecture gives an introduction to simulation of communication networks as well as measuring in real or prototypical systems and testbeds. In addition to well-known methods and their applications selected aspects of current research questions will be elaborated on.

Topics of the lecture are:
- Introduction to performance evaluation and applications
- Leaky bucket traffic regulators, deterministic traffic models, deterministic and empirical envelopes
- Scheduling, generalized processor sharing
- Network calculus, min-plus systems theory, deterministic performance bounds
- Poisson processes, Markov-chains, classical queuing theory, M|M|1 and M|G|1 models
- Modeling of packet data traffic, self-similarity
- Effective bandwidths, moment generating functions, statistical multiplexing
- Statistical network calculus, effective envelopes, effective performance bounds
- Simulation, generation of random numbers, distributions, confidence intervals
- Instrumentation, measurements, bandwidth estimation in the Internet

2 Learning objectives / Learning Outcomes
Students attending this lecture obtain an overview on the impact, fundamental methods, and important applications of performance evaluation of communication networks. They are acquainted with characteristic mechanisms and scheduling algorithms used in quality of service networks and are able to explain their functionality in terms of network calculus and the framework of min-plus systems theory. In addition to basic queuing theory the students acquire sound knowledge of the theory of effective bandwidths and thus exhibit a theoretically founded understanding of statistical multiplexing. Beyond analytical methods, the students gain insight into simulation as well as selected measurement methods and tools used in real networks. They are able to define the scope of individual theories and methods, select suitable, problem tailored techniques, apply these to typical problems, and draw relevant conclusions.

3 Recommended prerequisite for participation
Basic courses of the first 4 semesters are required. Knowledge of lectures Communication Networks I and II are recommended.

4 Form of examination
Module Final Examination:
 • Module Examination (Technical Examination, Oral Examination, Duration: 30 min, Standard Grading System)

5 Grading
Module Final Examination:
• Module Examination (Technical Examination, Oral Examination, Weighting: 100%)

6 Usability of this module
Wi-CS, Wi-ETiT, BSc/MSc CS, MSc ETiT, MSc iST

7 Grade bonus compliant to §25 (2)

8 References
Ausgewählte Kapitel aus folgenden Büchern:
• Selected Journal Articles and Conference Papers

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2030-vl</td>
<td>Communication Networks IV: Performance Evaluation of Communication Networks</td>
<td>Dr.-Ing. Amr Rizk, Prof. Dr.-Ing. Ralf Steinmetz</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

3.5 Communication Science and Media Technology
Module name
Network Security

Module Nr. 20-00-0512
Credit Points 6 CP
Workload 180 h
Self study 120 h
Duration 1
Cycle offered Every 2. Sem.

Language English
Module owner Dr.-Ing. Michael Kreutzer

1 Content
The integrated course Network Security covers the principles and practice of computer and telecommunication network security with particular emphasis on Internet security. After transferring the fundamentals of IT security and cryptography to the networking domain, we follow a top-down approach to network security. Starting with the application layer, the course provides a detailed discussion of network security principles and protocols. In addition to well-known mechanisms, selected recent developments in the area of network security will be examined.

Course contents:
- Network security: introduction, motivation, and challenges
- Fundamentals: a reference model for network security, security standards for networks and the Internet, security threats, attacks, services, and mechanisms
- Cryptographic foundations for networking security: symmetric crypto and its use in networks, public-key crypto and its use in networks, support functions to implement network security
- Application layer security
- Transport layer security
- Network layer security
- Link layer security
- Physical layer security and physical security
- Operational network security: firewalls, intrusion detection systems
- Selected topics in network security

2 Learning objectives / Learning Outcomes
After successfully attending the course, students have acquired an in-depth knowledge in the domain of communication network security with emphasis on Internet security. Students are able to apply and transfer the most important fundamentals from IT security and cryptography to the field of communication networks. Students are able to distinguish the most important basic techniques for securing communication networks. They have a thorough understanding of security mechanisms on the different network layers (application layer, transport layer, network layer, link layer, physical layer). As a result, they are able to thoroughly discuss the characteristics and principles in the area of network security and exhibit detailed theoretical and practical knowledge in this field. Additionally, students are able to describe recent developments in the area of network security (e.g. peer-to-peer security, mobile network security, etc.). The exercise deepens the theoretical foundations by means of exercises, which consist of literature, calculation as well as practical implementation/application examples.

3 Recommended prerequisite for participation
Knowledge in the area IT Security, Introduction to Cryptography and Communication Networks

4 Form of examination
Module E accompany Examination:
- [20-00-0512-iv] (Technical Examination, Written/Oral Examination, Standard BWS)

5 Grading
Module E accompany Examination:
- [20-00-0512-iv] (Technical Examination, Written/Oral Examination, Weighting: 100%)

6 Usability of this module
B.Sc. Informatik
M.Sc. Informatik
M.Sc. Wirtschaftsinformatik
B.Sc. Psychologie in IT
Joint B.A. Informatik
B.Sc. Sportwissenschaft und Informatik
Can be used in other degree programs.

7 **Grade bonus compliant to §25 (2)**
 In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25 (2) der 5. Novelle der APB und den vom FB 20 am 30.3.2017 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

8 **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0512-iv</td>
<td>Network Security</td>
<td>Integrated Course</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Dr.-Ing. Michael Kreutzer
Module name
Project on Secure Mobile Networking

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0553</td>
<td>9 CP</td>
<td>270 h</td>
<td>180 h</td>
<td>1</td>
<td>Every 2. Sem.</td>
</tr>
</tbody>
</table>

Language
German and English

Module owner
Prof. Dr. rer. nat. Karsten Weihe

1 Content
The Project on Secure Mobile Networking covers the applied software development as well as hardware-software development. Topic areas covered are communication networks, IT security, mobile networks and wireless communications as well as the combination of these. Goal is to independently carry out a development project in a team.

Course contents:
- Independent solving of a development project in the area of communication networks, IT security, mobile networks and wireless communications
- Project planning and project management
- Survey on solution alternatives and discussion of pros and cons
- Conception of a software architecture or a combined hardware-software architecture
- Software/hardware design for the target platform
- Prototypical realization on the target platform
- Evaluation of the system with respect to performance aspects
- Documentation of the implemented solution as well as extensive documentation of the project management

2 Learning objectives / Learning Outcomes
After successfully attending the course, students have acquired the ability to solve complex problems in the area of secure mobile networking using software technology. To this end, the students are able to independently define, manage and carry out a project.

The students have gained insight into the design/implementation of complex protocols or applications in one/multiple of the areas of communication networks, IT security, mobile networks and wireless communications. They are able to implement the chosen protocols and application, to test the functionality as well as to evaluate the performance. The students are able to document the project planning and management, the developed software artefacts and to present the project progress and outcomes.

3 Recommended prerequisite for participation
Successfull participation of an lecture of SEEMOO.

4 Form of examination
Module Ecompanying Examination:
- [20-00-0553-pp] (Study Achievement, Written/Oral Examination, Standard BWS)

5 Grading
Module Ecompanying Examination:
- [20-00-0553-pp] (Study Achievement, Written/Oral Examination, Weighting: 100 %)

6 Usability of this module
B.Sc. Informatik
M.Sc. Informatik
M.Sc. Wirtschaftsinformatik
B.Sc. Psychologie in IT
Joint B.A. Informatik
B.Sc. Sportwissenschaft und Informatik
Can be used in other degree programs.

7 Grade bonus compliant to §25 (2)

8 References
Will be given in project.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0553-pp</td>
<td>Secure Mobile Networking Project</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Matthias Hollick</td>
<td>Internship</td>
<td>6</td>
</tr>
</tbody>
</table>
Module name
Network, Traffic and Quality Management for Internet Services

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0056</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1</td>
<td>Every 2. Sem.</td>
</tr>
</tbody>
</table>

Language
English
Module owner
Prof. Dr. rer. nat. Eberhard Max Mühlhäuser

1 Content
Introduction into management of Internet service provider (ISP-)networks for integrating IP service platforms with their quality and traffic profiles

2 Learning objectives / Learning Outcomes
Course Content:
Demands and measures for ensuring Quality-of-Service (QoS)
Criteria from the applications & users view (QoE: Quality of Experience)
IP QoS Architecture: Differentiated & Integrated Services
QoS support & impact per application in the current IP traffic mix
(Video streaming, VoIP, web browsing, downloads, social networking etc.)
Quality support for IP services within ISP network infrastructures
Impact of network and transport layer
Routing (OSPF, BGP), Multi-protocol Label Switching (MPLS), TCP incl. failure handling and resilience
Measurement, monitoring and optimization of IP traffic regarding QoS criteria
Quality support in service overlays and on application layer
Content Delivery Networks (CDN), clouds and Peer-to-Peer networks (P2P) incl. distributed caches, optimization of transport paths, scalability and
IETF Standardization (CDN Interconnection, ALTO: Appl. Layer Traffic Opt.)

3 Recommended prerequisite for participation
Prerequisites: Basic knowledge in computer science and Internet applications is required. The courses on Kommunikationsnetze I and II are recommended.

4 Form of examination
Module Ecompanying Examination:
• [20-00-0056-vl] (Technical Examination, Written/Oral Examination, Standard BWS)

5 Grading
Module Ecompanying Examination:
• [20-00-0056-vl] (Technical Examination, Written/Oral Examination, Weighting: 100%)

6 Usability of this module

7 Grade bonus compliant to §25 (2)

8 References
Will be given in lecture.

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0056-vl</td>
<td>Network, traffic and quality management for Internet services</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Module name</td>
<td>Serious Games</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Nr.</td>
<td>20-00-0366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self study</td>
<td>120 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle offered</td>
<td>Every 2. Sem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German and English</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. Bernt Schiele</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 **Content**

Introduction to the topic of “Serious Games”: scientific and technical foundations, application areas and trends. Individual lectures include:

* Introduction to Serious Games
* Game Development, Game Design
* Game Technology, Tools and Engines
* Personalization and Adaptation
* Interactive Digital Storytelling
* Authoring and Content Generation
* Multiplayer Games
* Game Interfaces and Sensor Technology
* Effects, Affects and User Experience
* Mobile Games
* Serious Games Application Domains and Best Practice Examples

The exercise consists of theoretical and practical parts. Students are taught how to use a Game Engine.

2 **Learning objectives / Learning Outcomes**

After successfully completing this course the students are able to explain the concept of “Serious Games” and can transfer it to different application domains (like education or health). They can describe the general approach for developing computer games and can apply basic principles of game design, personalisation/adaptation and interactive digital storytelling. Aside from that students are able to sketch out other current research questions regarding Serious Games as well as their solutions.

3 **Recommended prerequisite for participation**

4 **Form of examination**

Module Ecompanying Examination:

- [20-00-0366-iv] (Technical Examination, Written/Oral Examination, Standard BWS)

5 **Grading**

Module Ecompanying Examination:

- [20-00-0366-iv] (Technical Examination, Written/Oral Examination, Weighting: 100%)

6 **Usability of this module**

B.Sc. Informatik
M.Sc. Informatik
B.Sc. Computational Engineering
M.Sc. Computational Engineering
M.Sc. Wirtschaftsinformatik
B.Sc. Psychologie in IT
Joint B.A. Informatik
B.Sc. Sportwissenschaft und Informatik
M.Sc. Sportwissenschaft und Informatik
Can be used in other degree programs.

7 **Grade bonus compliant to §25 (2)**

In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25 (2) der 5. Novelle der APB und den vom FB 20 am 30.3.2017 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

8 **References**

3.5 Communication Science and Media Technology
Will be given in lecture.

<table>
<thead>
<tr>
<th>Courses</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
</tr>
<tr>
<td>20-00-0366-iv</td>
<td>Serious Games</td>
<td>Integrated Course</td>
</tr>
<tr>
<td>Instructor</td>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Module name
Software Defined Networking

Module Nr. 18-sm-2280
Credit Points 6 CP
Workload 180 h
Self study 120 h
Duration 1
Cycle offered WiSe

Language
German and English

Module owner
Prof. Dr.-Ing. Ralf Steinmetz

1. Content
The course deals with topics in the area of software defined networking:
• SDN Data Plane
• SDN Control Plane
• SDN Application Plane
• Network Function Virtualization
• Network Virtualization and Slicing
• QoS and QoE in Software Defined Networks

2. Learning objectives / Learning Outcomes
Students will get a deep insight into Software Defined Networking as well as underlying technologies and applications.

3. Recommended prerequisite for participation
Basic courses of the first 4 semesters are required. Knowledge of lectures Communication Networks I and II are recommended.

4. Form of examination
Module Final Examination:
• Module Examination (Technical Examination, Optional, Standard Grading System)

5. Grading
Module Final Examination:
• Module Examination (Technical Examination, Optional, Weighting: 100%)

6. Usability of this module
MSc ETiT, BSc/MSc iST, MSc Wi-ETiT, CS, Wi-CS

7. Grade bonus compliant to §25 (2)

8. References
Textbooks as indicated.
Slides and paper copies as necessary.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2280-vl</td>
<td>Software Defined Networking</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Boris Koldehofe, M.Sc. Ralf Kundel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2280-ue</td>
<td>Software Defined Networking</td>
<td>Practice</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Boris Koldehofe, M.Sc. Ralf Kundel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5 Communication Science and Media Technology
<table>
<thead>
<tr>
<th>Module name</th>
<th>TK3: Ubiquitous / Mobile Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>20-00-0120</td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Self study</td>
<td>120 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>Every 2. Sem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module owner</td>
<td>Prof. Dr. rer. nat. Eberhard Max Mühlhäuser</td>
</tr>
</tbody>
</table>

1 **Content**
 - Knowledge of technical basics of the mobile communication
 - Knowledge of important challenges of the Ubiquitous Computing
 - Methodic knowledge about current approaches to these challenges

2 **Course Content:**
 - Introduction to Ubiquitous Computing
 - Mobile Communication
 - Internet of Things: RFID and Smart Items
 - Service Discovery & Cloudlets
 - Context- and Location-aware Computing
 - Human Computer Interaction
 - Privacy and Trust in Ubiquitous Computing

3 **Learning objectives / Learning Outcomes**
 After successfully attending the course, students are familiar with the technical basis of mobile communication. They understand the fundamental challenge of ubiquitous computing. They know current approaches to solve these challenges. They are able to apply their knowledge to build ubiquitous computing systems.

4 **Recommended prerequisite for participation**
 Computer Netzwerke and Distributed Systems

5 **Form of examination**
 Module Eccompanying Examination:
 - [20-00-0120-iv] (Technical Examination, Written/Oral Examination, Standard BWS)

6 **Grading**
 Module Eccompanying Examination:
 - [20-00-0120-iv] (Technical Examination, Written/Oral Examination, Weighting: 100 %)

7 **Usability of this module**
 B.Sc. Informatik
 M.Sc. Informatik
 M.Sc. Wirtschaftsinformatik
 B.Sc. Psychologie in IT
 Joint B.A. Informatik
 B.Sc. Sportwissenschaft und Informatik
 M.Sc. Sportwissenschaft und Informatik
 May be used in other degree programs.

8 **Grade bonus compliant to §25 (2)**
 In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25 (2) der 5. Novelle der APB und den vom FB 20 am 30.3.2017 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

8 **References**
Literature recommendations will be updated regularly, an example might be:

A Primary Literature:

B Secondary Literature:
4. J. Krumm (Ed.): Ubiquitous Computing Fundamentals, CRC Press 2010

D. Cook, S. Das (Ed.): Smart Environments, Wiley 2005

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>20-00-0120-iv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Integrated Course</td>
<td>4</td>
</tr>
<tr>
<td>Module name</td>
<td>Ubiquitous computing in business processes</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Module Nr.</td>
<td>20-00-0121</td>
<td></td>
</tr>
<tr>
<td>Credit Points</td>
<td>3 CP</td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
<td></td>
</tr>
<tr>
<td>Self study</td>
<td>60 h</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cycle offered</td>
<td>Every 2. Sem.</td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German and English</td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. rer. nat. Eberhard Max Mühlhäuser</td>
<td></td>
</tr>
</tbody>
</table>

1 **Content**
- Learning how state-of-the-art ubiquitous computing technologies can be utilized in enterprise business processes and in the context of smart city services
- Identifying technologies’ economic potential for business processes and in the context of smart cities
- Understanding underlying technologies, their benefits, challenges, and corresponding business cases
- Technologies considered will be RFID technology and its integration with business processes, other smart items (e.g., smart shelves), etc.
- Demonstration of how integration works between the real world and the virtual world as it is represented in enterprise software systems today
- Hands-on experience and live demonstrations

2 **Learning objectives / Learning Outcomes**
After participation in this course, students will have acquired knowledge about implications of ubiquitous computing on business to business processes and in the context of smart city services in conjunction with basic concepts.

3 **Recommended prerequisite for participation**

4 **Form of examination**
Module Ecompanying Examination:
- [20-00-0121-vl] (Technical Examination, Written/Oral Examination, Standard BWS)

5 **Grading**
Module Ecompanying Examination:
- [20-00-0121-vl] (Technical Examination, Written/Oral Examination, Weighting: 100 %)

6 **Usability of this module**
- B.Sc. Informatik
- M.Sc. Informatik
- M.Sc. Wirtschaftsinformatik
- B.Sc. Psychologie in IT
- Joint B.A. Informatik
- B.Sc. Sportwissenschaft und Informatik
- M.Sc. Sportwissenschaft und Informatik
May be used in other degree programs.

7 **Grade bonus compliant to §25 (2)**

8 **References**

Courses

3.5 Communication Science and Media Technology
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0121-vl</td>
<td>Ubiquitous computing in business processes</td>
<td></td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Machine Learning in Information and Communication Technology (ICT)

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-2110</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. techn. Heinz Köppl

1 Content
The module provides an introduction to the emerging field of machine learning from an engineering perspective. Important models and learning methods are presented and exemplified through problems from information and communication technology.

- Fundamentals of probability theory and multivariate statistics
- Taxonomy of machine learning problems and models (supervised, unsupervised, generative, discriminative)
- Regression and classification: theory, methods and ICT applications
- Dimensionality reduction, clustering and big data analytics: methods and application in communications and signal processing
- Probabilistic graphical models: categories, inference and parameter estimation
- Fundamentals of Bayesian inference, Monte Carlo methods, Bayesian non-parametrics
- Fundamentals of convex optimization: Solution methods and application in communications
- Approximate algorithms for scalable Bayesian inference; application in signal processing and information theory (e.g. decoding of LDPC codes)
- Hidden Markov models (HMM): Theory, Algorithms and ICT applications (e.g. Viterbi decoding of convolutional codes)
- High-dimensional statistics ("large p small n" setting), learning dependency structure in high-dimensional data, learning causality relations from observational data.
- Sparse estimation, random projections, compressive sensing: Theory and applications in signal processing
- Deep neural networks (deep learning): Models, learning algorithms, libraries and ICT applications

2 Learning objectives / Learning Outcomes
Students are able to interpret and categorize specific engineering problems from the ICT domain in terms of machine learning problems.

They are able to reduce such problems to standard machine learning problems and are able to determine suitable solution methods for them.

They are able to implement all necessary algorithms from scratch, but they are also familiar with the state-of-the-art libraries in machine learning.

They are able to determine the involved computational complexity of a method and choose an appropriate solution algorithms based on application constraints.

They are able to apply the acquired methods to other domains, such as data analysis in biomedical engineering, analysis of social network data, etc.

3 Recommended prerequisite for participation
Good command of Matlab (for instance knowledge from course 18-st-2030 Matlab Grundkurs) and engineering mathematics

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Optional, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Optional, Weighting: 100 %)

6 Usability of this module
MSc etit, BSc/MSc iST, MSc iCE, MSc CE

3.5 Communication Science and Media Technology 120
8 References

- Peter Bühlmann und Sara van de Geer. Statistics of high-dimensional data – Methods, theory and applications, Springer, 2011

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-2110-vl</td>
<td>Machine Learning in Information and Communication Technology (ICT)</td>
<td>Prof. Dr. techn. Heinz Köppl, Prof. Dr.-Ing. Anja Klein</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-kp-2110-pr</td>
<td>Machine Learning in Information and Communication Technology (ICT) Lab</td>
<td>Prof. Dr. techn. Heinz Köppl, Prof. Dr.-Ing. Anja Klein</td>
<td>Internship</td>
<td>1</td>
</tr>
<tr>
<td>18-kp-2110-ue</td>
<td>Machine Learning in Information and Communication Technology (ICT)</td>
<td>Prof. Dr. techn. Heinz Köppl, Prof. Dr.-Ing. Anja Klein</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Radar Techniques

Module Nr. Credit Points Workload Self study Duration Cycle offered
18-jk-2040 3 CP 90 h 60 h 1 WiSe

Language Module owner
German Prof. Dr.-Ing. Rolf Jakoby

1 Content
First, there will be an introduction of different radar techniques, describing their concepts and principles, their applications and the operating frequency ranges. In a historical survey, the radar ranges and propagation effects will be dealt with. In the second part, various primary and secondary radar techniques will be investigated in detail, including specific techniques of radar signal processing and analysis.

2 Learning objectives / Learning Outcomes
Students will know about concepts and principles to detect objects as well as to determine the angular position and range of objects. They learn about the functional principles of various radar systems, including signal processing. They will understand the major physical propagation effects.

3 Recommended prerequisite for participation
Fundamentals of Communications, Microwave Engineering I

4 Form of examination
Module Final Examination:
• Module Examination (Technical Examination, Oral Examination, Duration: 30 min, Standard Grading System)

5 Grading
Module Final Examination:
• Module Examination (Technical Examination, Oral Examination, Weighting: 100 %)

6 Usability of this module
MSc ETiT, MSc iCE, MSc Wi-ETiT

7 Grade bonus compliant to §25 (2)

8 References
Slides, Latest Publications and Books

Courses
Course Nr. Course name
18-jk-2040-vl Radar Techniques

Instructor
PD Dr. habil. Holger Maune

Type SWS
Lecture 2
| Content | Basics of tensor analysis (tensor fields, transformation behavior, invariance, Ricci calculus, covariant derivative, differential operators), Lorentz transform, fundamental relativistic effects (time dilation, length contraction, Doppler effect), covariant form of Maxwell's equations, induction law from relativistic point of view, relation to relativistic mechanics, four-vectors and four-tensors, electromagnetic energy-momentum tensor and Maxwell's stress tensor, applications of relativistic electrodynamics |

| Learning objectives / Learning Outcomes | The students understand the basic ideas of Special Relativity and are familiar with the scientific vocabulary. They are able to derive and interpret fundamental formulas, and they are familiar with the mathematical tools. The students understand the concept of covariance and a coordinate-free description of physical theories. They are able to quantitatively compute electromagnetic phenomena in the context of Special Relativity. |

| Recommended prerequisite for participation | Recommended: “Grundlagen der Elektrodynamik” (18-dg-1010) |

<table>
<thead>
<tr>
<th>Form of examination</th>
<th>Module Final Examination:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Module Examination (Technical Examination, Oral Examination, Duration: 30 min, Standard Grading System)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grading</th>
<th>Module Final Examination:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Module Examination (Technical Examination, Oral Examination, Weighting: 100%)</td>
<td></td>
</tr>
</tbody>
</table>

| Usability of this module | |

| Grade bonus compliant to §25 (2) | |

| References | Lecture slides are offered for download. Further references are given in the lecture. |

<table>
<thead>
<tr>
<th>Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
</tr>
<tr>
<td>18-kb-2020-vl</td>
<td>Relativistic Electrodynamics</td>
</tr>
<tr>
<td>Instructor</td>
<td>Type</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Harald Klingbeil</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
</tr>
<tr>
<td>18-kb-2020-ue</td>
<td>Relativistic Electrodynamics</td>
</tr>
<tr>
<td>Instructor</td>
<td>Type</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Harald Klingbeil</td>
<td>Practice</td>
</tr>
</tbody>
</table>
Module name
Fundamentals of Reinforcement Learning

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2070</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Anja Klein

1 Content
- Review of Probability Theory
- Markov Property and Markov Decision Processes
- The Multi-Armed Bandit Problem vs. the Full Reinforcement Learning Problem
- Taxonomy of Multi-Armed Bandit Problems (e.g., Stochastic vs. Adversarial Rewards, Contextual MAB)
- Algorithms for Multi-Armed Bandit Problems (e.g., Upper Confidence Interval (UCB), Epsilon-Greedy, SoftMax, LinUCB) and their Application to Cyber-Physical Networking
- Fundamentals of Dynamic Programming and Bellman Equations
- Taxonomy of Approaches for the Full Reinforcement Learning Problem (e.g., Temporal-Difference Learning, Policy Gradient and Actor-Critic)
- Algorithms for the Full Reinforcement Learning Problem (e.g., Q-Learning, SARSA, Policy Gradient, Actor-Critic) and their Application to Cyber-Physical Networking
- Linear Function Approximation
- Non-linear Function Approximation

2 Learning objectives / Learning Outcomes
The students are able to
- define the Markov property and identify the elements that constitute a Markov decision process. They will be able to use these concepts to model decision-making problems in Cyber-Physical Networking.
- determine the characteristics of the Multi-Armed Bandit (MAB) Problem and compare them to the characteristics of the Full Reinforcement Learning (RL) Problem.
- determine under which conditions the MAB or the full RL formulation should be used to solve decision-making problems.
- differentiate the main MAB strategies, e.g., Upper Confidence Interval (UCB), Epsilon-Greedy and Softmax.
- choose appropriate MAB strategies for the solution of MAB problems.
- formulate and solve Contextual-MAB problems.
- determine under which conditions Dynamic Programming can be used to solve decision-making problems.
- explain the difference between Dynamic Programming and RL methods.
- differentiate between Temporal-Difference, Policy Gradient and Actor-Critic RL techniques.
- identify the limitations of MAB and full RL problems.
- explain the need for generalization in MAB and full RL problems.
- choose appropriate approximation techniques and use them in combination with MAB and full RL strategies.
- apply algorithmic techniques to solve MAB and full RL problems and obtain valid solutions.
- judge the reasonableness and consistency of the obtained solutions.

3 Recommended prerequisite for participation
- Python or Matlab: basic knowledge
- Engineering mathematics and probability theory

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written/Oral Examination, Duration: 60 min, Standard Grading System)
The examination takes place in form of a written exam (duration: 60 minutes). If one can estimate that less than 21 students register, the examination will be an oral examination (duration: 20 min.). The type of examination will be announced in the beginning of the lecture.

<table>
<thead>
<tr>
<th>5</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Final Examination:</td>
<td></td>
</tr>
<tr>
<td>• Module Examination (Technical Examination, Written/Oral Examination, Weighting: 100%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Usability of this module</th>
</tr>
</thead>
</table>

| 7 | Grade bonus compliant to §25 (2) |

<table>
<thead>
<tr>
<th>8</th>
<th>References</th>
</tr>
</thead>
</table>

| Courses |
|---|---|
| **Course Nr.** | **Course name** |
| 18-kl-2070-vl | Fundamentals of Reinforcement Learning |
| **Instructor** | **Type** | **SWS** |
| Dr. rer. nat. Sabrina Klos, Dr.-Ing. Andrea Patricia Ortiz Jimenez | Lecture | 2 |
| **Course Nr.** | **Course name** |
| 18-kl-2070-ue | Fundamentals of Reinforcement Learning |
| **Instructor** | **Type** | **SWS** |
| Dr. rer. nat. Sabrina Klos, Dr.-Ing. Andrea Patricia Ortiz Jimenez | Practice | 1 |
Module name
Automated Driving

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2110</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Jürgen Adamy

1 Content
- History of Automated Driving
- Terminology and Paths towards Automated Driving
- Architectures, Building Blocks, and Components
- Perception & Environment Models
- Data Fusion & State Estimation
 - Deep Dive: Target Tracking & Traffic Participant Fusion
 - Deep Dive: Grid Fusion & Free Space Estimation
 - Deep Dive: Road Model Fusion
- Localization, Digital Maps, and Vehicle-To-X Communication
- Situation Understanding, Prediction, and Criticality Assessment
 - Deep Dive: Probabilistic Driving Maneuver Detection
- Behavior & Trajectory Planning, Decision Making
- Automated Driving Software Development & Test
- Open Challenges & State-of-the-Art Research Topics

2 Learning objectives / Learning Outcomes
After visiting the lecture, the student
- is familiar with the history and terminology of automated driving systems,
- knows important architectures, building blocks, and components of automated vehicles,
- understands different perception, environment model, and data fusion approaches,
- has an idea about relevant methods (e.g. Bayesian Inference & Probabilistic Graphical Models, State Estimation, Deep Learning, Dempster-Shafer Theory) and knows how they can be beneficially applied in different of automated driving areas (e.g. detection, target tracking & traffic participant fusion, grid fusion, road model fusion, localization),
- is familiar with the challenges of situation understanding, prediction, and criticality assessment and knows exemplary methods to tackle the problem,
- is aware of exemplary behavior & trajectory planning approaches,
- knows best practices about automated driving software development & test (e.g. continuous integration, verification & validation, test-driven development, key performance indicators), and
- is familiar with open challenges and research topics.

3 Recommended prerequisite for participation

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Duration: 90 min, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Written Examination, Weighting: 100%)

6 Usability of this module
Msc etit, Msc MEC, Msc Wi-etit, Msc ICE, Msc CE, Msc Informatik

3.5 Communication Science and Media Technology
Grade bonus compliant to §25 (2)

References
Own lecture slides are distributed in advance of any lecture. For more detailed insights into the topic area, the following books can be recommended:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2110-vl</td>
<td>Automated Driving</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Jürgen Adamy
3.5.2 Seminars

Module name
Multimedia Communications Seminar II

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2090</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

Language
German and English

Module owner
Prof. Dr.-Ing. Ralf Steinmetz

1 Content
This seminar deals with current and upcoming trends relevant to the future development of multimedia communication systems. The educational objective of this seminar is to gain knowledge about future research trends in different areas. To this aim, an extensive literature research will be performed, as well as the writing-up of a report and the presentation of selected, high-quality research topics from current leading magazines, newspapers and conferences in the web technologies research area.

Some potential topics are:
- Knowledge & Educational Technologies
- Self organizing Systems & Overlay Communication
- Mobile Systems & Sensor Networking
- Service-oriented Computing
- Multimedia Technologies & Serious Games

2 Learning objectives / Learning Outcomes
Students shall acquire profound knowledge from current scientific publications, standards and literature on multimedia communication systems and applications which will build the future Internet. In so doing, the students will develop the following competencies:
- Search for and review relevant scientific literature.
- Analyse and evaluate complex technical and scientific information.
- Write technical and scientific abstracts and summary reports.
- Present technical and scientific information.

3 Recommended prerequisite for participation
Solid knowledge in computer communication networks. Lectures in Communication Networks I and II are recommended.

4 Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Optional, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Study Achievement, Optional, Weighting: 100 %)

6 Usability of this module
CS, Wi-CS, ETiT, Wi-ETiT, MSc CS, MSc ETiT, MSc iST

7 Grade bonus compliant to §25 (2)

8 References
Depending on specific topic (selected articles of journals, magazines, and conferences).

Courses

3.5 Communication Science and Media Technology
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
</table>

3.5 Communication Science and Media Technology
3.5.3 Laboratories

<table>
<thead>
<tr>
<th>Module name</th>
<th>Multimedia Communications Lab II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>18-sm-2070</td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Self study</td>
<td>135 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>WiSe/SoSe</td>
</tr>
<tr>
<td>Language</td>
<td>German and English</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Ralf Steinmetz</td>
</tr>
</tbody>
</table>

1 Content
The course deals with cutting edge development topics in the area of multimedia communication systems. Besides a general overview it provides a deep insight into a special development topic. The topics are selected according to the specific working areas of the participating researchers and convey technical and basic scientific competences in one or more of the following topics:
- Network planning and traffic analysis
- Performance evaluation of network applications
- Discrete event simulation for network services
- Protocols for mobile ad hoc networks / sensor networks
- Infrastructure networks for mobile communication / mesh networks
- Context-aware communication and services
- Peer-to-peer systems and architectures
- Content distribution and management systems for multimedia / e-learning
- Multimedia authoring and re-authoring tools
- Web service technologies and service-oriented architectures
- Applications for distributed workflows

2 Learning objectives / Learning Outcomes
The ability to solve and evaluate problems in the area of design and development of future multimedia communication networks and applications shall be acquired. Acquired competences are:
- Design of complex communication applications and protocols
- Implementing and testing of software components for distributed systems
- Application of object-oriented analysis and design techniques
- Acquisition of project management techniques for small development teams
- Writing of software documentation and project reports
- Presentation of project advances and outcomes

3 Recommended prerequisite for participation
Keen interest to explore challenging topics which are cutting edge in technology and research. Further we expect:
- Solid experience in programming Java and/or C# (C/C++)
- Solid knowledge in object oriented analysis and design
- Solid knowledge in computer communication networks are recommended
- Lectures in Communication Networks I (II, III, or IV) are an additional plus

4 Form of examination
Module Final Examination:
- Module Examination (Study Achievement, Optional, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Study Achievement, Optional, Weighting: 100 %)

6 Usability of this module
MSc ETiT, MSc iCE, BSc/MSc iST, Wi-ETiT, BSc/MSc CS, Wi-CS,
Grade bonus compliant to §25 (2)

References
Each topic is covered by a selection of papers and articles. In addition we recommend reading of selected chapters from following books:

- Erich Gamma, Richard Helm, Ralph E. Johnson: "Design Patterns: Objects of Reusable Object Oriented Software" (ISBN 0-201-63361-2)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
</table>
Module name
Lab Exercise on Secure Mobile Networking

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0552</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>Every 2. Sem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German and English</td>
<td>Prof. Dr. rer. nat. Karsten Weihe</td>
</tr>
</tbody>
</table>

Content
The Lab Exercise on Secure Mobile Networking covers the applied software development as well as hardware-software development. Topic areas covered are communication networks, IT security, mobile networks and wireless communications as well as the combination of these. Goal is the solving of a given problem by implementation in software or hardware/software in a team.

Course contents:
- Solving of a problem in the area of communication networks, IT security, mobile networks and wireless communications
- Survey on solution alternatives and discussion of pros and cons
- Conception of a software architecture or a combined hardware-software architecture
- Software/hardware design for the target platform
- Prototypical realization on the target platform
- Evaluation of the system with respect to performance aspects
- Documentation of the implemented solution

Learning objectives / Learning Outcomes
After successfully attending the course, students have acquired the ability to solve problems in the area of secure mobile networking using software technology. The students have gained insight into the design/implementation of complex protocols or applications in one/multiple of the areas of communication networks, IT security, mobile networks and wireless communications. They are able to implement the chosen protocols and application, and to test the functionality as well as to evaluate the performance. Students are able to document the developed software artefacts and to present the project progress and outcomes.

Recommended prerequisite for participation
Successfull participation in an lecture of SEEMOO.

Form of examination
Module Ecompanying Examination:
- [20-00-0552-pr] (Study Achievement, Written/Oral Examination, Standard BWS)

Grading
Module Ecompanying Examination:
- [20-00-0552-pr] (Study Achievement, Written/Oral Examination, Weighting: 100 %)

Usability of this module
- B.Sc. Informatik
- M.Sc. Informatik
- M.Sc. Wirtschaftsinformatik
- B.Sc. Psychologie in IT
- Joint B.A. Informatik
- B.Sc. Sportwissenschaft und Informatik

Can be used in other degree programs.

Grade bonus compliant to §25 (2)

References
Will be given in lab.

Courses

3.5 Communication Science and Media Technology
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0552-pr</td>
<td>Secure Mobile Networking Lab</td>
</tr>
</tbody>
</table>

Instructor

Prof. Dr.-Ing. Matthias Hollick

<table>
<thead>
<tr>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship</td>
<td>4</td>
</tr>
<tr>
<td>Module name</td>
<td>Visual Computing Lab</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Module Nr.</td>
<td>20-00-0418</td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Self study</td>
<td>120 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>Every 2. Sem.</td>
</tr>
<tr>
<td>Language</td>
<td>German and English</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. Bernt Schiele</td>
</tr>
</tbody>
</table>

1 **Content**
Students work in this lab on selected topics in the area of visual computing. Project results will be presented in a talk at the end of the course. The specific topics addressed in the lab change every semester and should be discussed directly with one of the instructors.

2 **Learning objectives / Learning Outcomes**
After successful completion of this course, the students will be able to independently analyze and solve a problem in the area of visual computing and to evaluate the results.

3 **Recommended prerequisite for participation**
- Practical programming skills, e.g. Java, C++
- Basic knowledge or interest within Visual Computing
- Participation in one basic lecture within Visual Computing

4 **Form of examination**
Module E accompanying Examination:
- [20-00-0418-pr] (Study Achievement, Written/Oral Examination, Standard BWS)

5 **Grading**
Module E accompanying Examination:
- [20-00-0418-pr] (Study Achievement, Written/Oral Examination, Weighting: 100%)

6 **Usability of this module**
- B.Sc. Informatik
- M.Sc. Informatik
- B.Sc. Computational Engineering
- M.Sc. Computational Engineering
- M.Sc. Wirtschaftsinformatik
- B.Sc. Psychologie in IT
- Joint B.A. Informatik
- B.Sc. Sportwissenschaft und Informatik
- M.Sc. Sportwissenschaft und Informatik

Can be used in other degree programs.

7 **Grade bonus compliant to §25 (2)**

8 **References**
Will be announced in course.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0418-pr</td>
<td>Lab Visual Computing</td>
<td>Internship</td>
<td>4</td>
</tr>
</tbody>
</table>

3.5 Communication Science and Media Technology
Module name
Multimedia Communications Project II

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2130</td>
<td>9 CP</td>
<td>270 h</td>
<td>180 h</td>
<td>1</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

Language
German and English

Module owner
Prof. Dr.-Ing. Ralf Steinmetz

1 Content
The course deals with cutting edge scientific and development topics in the area of multimedia communication systems. Besides a general overview it provides a deep insight into a special scientific topic. The topics are selected according to the specific working areas of the participating researchers and convey technical and scientific competences in one or more of the following topics:

- Network planning and traffic analysis
- Performance evaluation of network applications
- Discrete event simulation for network services
- Protocols for mobile ad hoc networks / sensor networks
- Infrastructure networks for mobile communication / mesh networks
- Context-aware communication and services
- Peer-to-peer systems and architectures
- Content distribution and management systems for multimedia / e-learning
- Multimedia authoring and re-authoring tools
- Web service technologies and service-oriented architectures
- Resource-based Learning

2 Learning objectives / Learning Outcomes
The ability to solve and evaluate technical and scientific problems in the area of design and development of future multimedia communication networks and applications using state of the art scientific methods shall be acquired. Acquired competences are:

- Searching and reading of project relevant literature
- Design of complex communication applications and protocols
- Implementing and testing of software components for distributed systems
- Application of object-oriented analysis and design techniques
- Acquisition of project management techniques for small development teams
- Systematic evaluation and analyzing of technical and scientific experiments
- Writing of software documentation and project reports
- Presentation of project advances and outcomes

3 Recommended prerequisite for participation
Keen interest to develop and explore challenging solutions and applications in cutting edge multimedia communications systems using scientific methods. Further we expect:

- Solid experience in programming Java and/or C# (C/C++).
- Solid knowledge in object oriented analysis and design.
- Basic knowledge of design patterns, refactoring and project management.
- Solid knowledge in computer communication networks is recommended.
- Lectures in “Communication Networks I” and “Communication Networks II” are recommended

4 Form of examination
Module Final Examination:

- Module Examination (Study Achievement, Optional, Standard Grading System)

5 Grading
Module Final Examination:

- Module Examination (Study Achievement, Optional, Weighting: 100 %)
Usability of this module
MSc Wi-ETiT, BSc/MSc CS, MSc Wi-CS, MSc ETiT, MSc iST

Grade bonus compliant to §25 (2)

References
Each topic is covered by a selection of papers and articles. In addition we recommend reading of selected chapters from following books:

- Erich Gamma, Richard Helm, Ralph E. Johnson: "Design Patterns: Objects of Reusable Object Oriented Software" (ISBN 0-201-63361-2)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
</table>

3.5 Communication Science and Media Technology 136
Module name
Project on Secure Mobile Networking

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0553</td>
<td>9 CP</td>
<td>270 h</td>
<td>180 h</td>
<td>1</td>
<td>Every 2. Sem.</td>
</tr>
</tbody>
</table>

Language
German and English

Module owner
Prof. Dr. rer. nat. Karsten Weihe

Content
The Project on Secure Mobile Networking covers the applied software development as well as hardware-software development. Topic areas covered are communication networks, IT security, mobile networks and wireless communications as well as the combination of these. Goal is to independently carry out a development project in a team.

Course contents:
- Independent solving of a development project in the area of communication networks, IT security, mobile networks and wireless communications
- Project planning and project management
- Survey on solution alternatives and discussion of pros and cons
- Conception of a software architecture or a combined hardware-software architecture
- Software/hardware design for the target platform
- Prototypical realization on the target platform
- Evaluation of the system with respect to performance aspects
- Documentation of the implemented solution as well as extensive documentation of the project management

Learning objectives / Learning Outcomes
After successfully attending the course, students have acquired the ability to solve complex problems in the area of secure mobile networking using software technology. To this end, the students are able to independently define, manage and carry out a project.

The students have gained insight into the design/implementation of complex protocols or applications in one/multiple of the areas of communication networks, IT security, mobile networks and wireless communications. They are able to implement the chosen protocols and application, and to test the functionality as well as to evaluate the performance. The students are able to document the project planning and management, the developed software artefacts and to present the project progress and outcomes.

Recommended prerequisite for participation
Successful participation of a lecture of SEEMOO.

Form of examination
Module Accompanying Examination:
- [20-00-0553-pp] (Study Achievement, Written/Oral Examination, Standard BWS)

Grading
Module Accompanying Examination:
- [20-00-0553-pp] (Study Achievement, Written/Oral Examination, Weighting: 100%)

Usability of this module
B.Sc. Informatik
M.Sc. Informatik
M.Sc. Wirtschaftsinformatik
B.Sc. Psychologie in IT
Joint B.A. Informatik
B.Sc. Sportwissenschaft und Informatik
Can be used in other degree programs.

Grade bonus compliant to §25 (2)

References

3.5 Communication Science and Media Technology
Will be given in project.

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>20-00-0553-pp</td>
</tr>
<tr>
<td>Instructor</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Matthias Hollick</td>
</tr>
</tbody>
</table>

3.5 Communication Science and Media Technology
All modules not already listed in this document and offered by Dept. (FB) 4–13 or 16–20.
4 Studium Generale

4.1 Business Administration

<table>
<thead>
<tr>
<th>Module name</th>
<th>Bookkeeping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>01-14-1030/2</td>
</tr>
<tr>
<td>Credit Points</td>
<td>2 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>60 h</td>
</tr>
<tr>
<td>Self study</td>
<td>15 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>Every Sem.</td>
</tr>
<tr>
<td>Language</td>
<td>German and English</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. rer. pol. Reiner Quick</td>
</tr>
</tbody>
</table>

1 Content
- Fundamentals of accounting and bookkeeping
- inventory
- balance sheet
- recording of assets and debt
- recording of expenses and revenues
- selected transactions (sales and purchases, noncurrent assets, current assets, accruals, wage and salary, distribution of earnings)
- annual closing entry

2 Learning objectives / Learning Outcomes
Students will understand basic concepts of financial accounting and its integration in accounting in general as well as the system of double-entry accounting. Students are going to learn to operate the recording of assets, debt, expenses and revenues. They will understand the procedure of double-entry accounting starting with the opening balance sheet, followed by the recording of transactions, the inventory and the final balance sheet. Selected issues of double-entry accounting will be discussed. Exercises are offered and discussed in the auditorium.

3 Recommended prerequisite for participation

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written/Oral Examination, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Written/Oral Examination, Weighting: 100%)

6 Usability of this module
Recommended semester: 1

7 Grade bonus compliant to §25 (2)

8 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-14-0001-vu</td>
<td>Financial Accounting</td>
<td>Prof. Dr. rer. pol. Reiner Quick</td>
<td>Lecture & Practice</td>
<td>2</td>
</tr>
<tr>
<td>01-14-0001-tt</td>
<td>Financial Accounting</td>
<td>Prof. Dr. rer. pol. Reiner Quick</td>
<td>Tutorial</td>
<td>1</td>
</tr>
</tbody>
</table>

4.1 Business Administration
Module name
Introduction to Business Administration

Module Nr.
01-10-1028/f

Credit Points
3 CP

Workload
90 h

Self study
60 h

Duration
1

Cycle offered
Every Sem.

Language
German

Module owner
Prof. Dr. rer. pol. Dirk Schiereck

1 **Content**
This course serves as an introduction into studies of business administration for students of other sciences. The course will provide a broad spectrum of knowledge from the "birth" of business administration as an university science field until its fragmentation into many specialized disciplines. Core topics will include basics of business administration (definitions and German legal forms), some Marketing concepts, introduction into Production Management (business process optimization and quality management), basic knowledge of organisational and personnel related topics, fundamental concepts of finance and investment as well as internal and external reporting standards.

2 **Learning objectives / Learning Outcomes**
The course encourages students who have not been confronted with business studies before to think economically. Furthermore, it should enable students to better understand actions of managers and corporations in general.

After the course students are able to
- comprehend the development in the history of business administration,
- apply essential marketing concepts,
- use fundamental methods in production management,
- economically valuate investment alternatives and
- understand important interrelations in financial accounting.

3 **Recommended prerequisite for participation**
None

4 **Form of examination**
Module Final Examination:
- Module Examination (Technical Examination, Written/Oral Examination, Standard Grading System)

5 **Grading**
Module Final Examination:
- Module Examination (Technical Examination, Written/Oral Examination, Weighting: 100%)

6 **Usability of this module**

7 **Grade bonus compliant to §25 (2)**

8 **References**
Further literature will be announced in the lecture.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-10-0000-vl</td>
<td>Introduction to Business Administration</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

4.1 Business Administration
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>01-10-0000-tt</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>Prof. Dr. rer. pol. Dirk Schiereck</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Module name
Introduction to Economics (V)

Module Nr. 01-60-1042/f Credit Points 3 CP
Workload 90 h Self study 60 h Duration 1
Cycle offered Every Sem.

Language
German and English

Module owner
Prof. Dr. rer. pol. Michael Neugart

1 Content
- Economic modeling
- Supply and demand
- Elasticities
- Consumer and producer rent
- Opportunity costs
- Marginal analysis
- Cost theory
- Utility maximization
- Macroeconomic aggregates
- Long-run growth
- Aggregate supply and aggregate demand

2 Learning objectives / Learning Outcomes
Students are introduced to the principles of economics and their application to selected fields of interest.

3 Recommended prerequisite for participation
None

4 Form of examination
Module Final Examination:
- Module Examination (Technical Examination, Written/Oral Examination, Standard Grading System)

5 Grading
Module Final Examination:
- Module Examination (Technical Examination, Written/Oral Examination, Weighting: 100%)

6 Usability of this module
none

7 Grade bonus compliant to §25 (2)

to be announced in course.

8 References

Courses

<table>
<thead>
<tr>
<th>Course Nr. 01-60-0000-vl</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to Economics</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
4.2 Languages

4.2.1 German Language Modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>German Basic Course I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Nr.</td>
<td>41-11-0112</td>
</tr>
<tr>
<td>Credit Points</td>
<td>3 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Self study</td>
<td>60 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
</tr>
<tr>
<td>Cycle offered</td>
<td>Every Sem.</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Module owner</td>
<td>M.A. Britta Friedmann</td>
</tr>
</tbody>
</table>

1 Content

2 Learning objectives / Learning Outcomes

3 Recommended prerequisite for participation

4 Form of examination
 Module Eccompanying Examination:
 - [41-11-0110-ku] (Study Achievement, Study Archievment, Duration: 90 min, Standard BWS)

5 Grading
 Module Eccompanying Examination:
 - [41-11-0110-ku] (Study Achievement, Study Archievment, Weighting: 100 %)

6 Usability of this module

7 Grade bonus compliant to §25 (2)

8 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-11-0110-ku</td>
<td>German Basic Course I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Course</td>
<td>2</td>
</tr>
<tr>
<td>Module name</td>
<td>German Basic Course I - Participation only</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-11-0114</td>
<td>0 CP</td>
<td>0 h</td>
<td>0 h</td>
<td>1</td>
<td>Every Sem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>M.A. Britta Friedmann</td>
</tr>
</tbody>
</table>

1. Content

2. Learning objectives / Learning Outcomes

3. Recommended prerequisite for participation

4. Form of examination
 - Module Eccompanying Examination:
 - [41-11-0110-ku] (Study Achievement, null, BWS b/nb)

5. Grading
 - Module Eccompanying Examination:
 - [41-11-0110-ku] (Study Achievement, null, Weighting: 100%)

6. Usability of this module

7. Grade bonus compliant to §25 (2)

8. References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-11-0110-ku</td>
<td>German Basic Course I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Course</td>
<td>2</td>
</tr>
</tbody>
</table>

4.2 Languages
Module name
German Basic Course II/III

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-11-0122</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>Every Sem.</td>
</tr>
</tbody>
</table>

Language
German

Module owner
M.A. Britta Friedmann

1 Content

2 Learning objectives / Learning Outcomes

3 Recommended prerequisite for participation

4 Form of examination
Module Ecompanying Examination:
• [41-11-0120-ku] (Study Achievement, Study Achievement, Duration: 90 min, Standard BWS)

5 Grading
Module Ecompanying Examination:
• [41-11-0120-ku] (Study Achievement, Study Achievement, Weighting: 100%)

6 Usability of this module

7 Grade bonus compliant to §25 (2)

8 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type Course</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-11-0120-ku</td>
<td>German Basic Course II/III</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

4.2 Languages
Module name
German Basic Course II/III - Participation only

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-11-0124</td>
<td>0 CP</td>
<td>0 h</td>
<td>0 h</td>
<td>1</td>
<td>Every Sem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>M.A. Britta Friedmann</td>
</tr>
</tbody>
</table>

1 Content

2 Learning objectives / Learning Outcomes

3 Recommended prerequisite for participation

4 Form of examination
Module Ecompanying Examination:
 • [41-11-0120-ku] (Study Achievement, null, BWS b/nb)

5 Grading
Module Ecompanying Examination:
 • [41-11-0120-ku] (Study Achievement, null, Weighting: 100 %)

6 Usability of this module

7 Grade bonus compliant to §25 (2)

8 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type Course</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-11-0120-ku</td>
<td>German Basic Course II/III</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Module name</td>
<td>German Basic Course IV/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Nr.</td>
<td>41-11-0132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self study</td>
<td>120 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle offered</td>
<td>Every Sem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>M.A. Britta Friedmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Content

2. Learning objectives / Learning Outcomes

3. Recommended prerequisite for participation

4. Form of examination
 Module Eccompanying Examination:
 - [41-11-0130-ku] (Study Achievement, Study Achievement, Duration: 90 min, Standard BWS)

5. Grading
 Module Eccompanying Examination:
 - [41-11-0130-ku] (Study Achievement, Study Achievement, Weighting: 100%)

6. Usability of this module

7. Grade bonus compliant to §25 (2)

8. References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-11-0130-ku</td>
<td>German Basic Course IV/V</td>
<td>Course</td>
<td>4</td>
</tr>
</tbody>
</table>

4.2 Languages
Module name
German Basic Course IV/V - Participation only

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-11-0134</td>
<td>0 CP</td>
<td>0 h</td>
<td>0 h</td>
<td>1</td>
<td>Every Sem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>M.A. Britta Friedmann</td>
</tr>
</tbody>
</table>

1. **Content**

2. **Learning objectives / Learning Outcomes**

3. **Recommended prerequisite for participation**

4. **Form of examination**
Module Ecompanying Examination:
- [41-11-0130-ku] (Study Achievement, null, BWS b/nb)

5. **Grading**
Module Ecompanying Examination:
- [41-11-0130-ku] (Study Achievement, null, Weighting: 100%)

6. **Usability of this module**

7. **Grade bonus compliant to §25 (2)**

8. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-11-0130-ku</td>
<td>German Basic Course IV/V</td>
<td>Course</td>
<td>4</td>
</tr>
</tbody>
</table>

4.2 Languages
Module name
German Intensive Basic Course I

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-12-0102</td>
<td>6 CP</td>
<td>180 h</td>
<td>0 h</td>
<td>1</td>
<td>Every Sem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>M.A. Britta Friedmann</td>
</tr>
</tbody>
</table>

1. **Content**

2. **Learning objectives / Learning Outcomes**

3. **Recommended prerequisite for participation**

4. **Form of examination**
 Module Ecompanying Examination:
 - [41-12-0100-ku] (Study Achievement, Study Archievement, Duration: 90 min, Standard BWS)

5. **Grading**
 Module Ecompanying Examination:
 - [41-12-0100-ku] (Study Achievement, Study Archievement, Weighting: 100%)

6. **Usability of this module**

7. **Grade bonus compliant to §25 (2)**

8. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type Course</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-12-0100-ku</td>
<td>German Intensive Basic Course I</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

4.2 Languages
Module name

German Intensive Basic Course II/III

<table>
<thead>
<tr>
<th>Module Nr.</th>
<th>Credit Points</th>
<th>Workload</th>
<th>Self study</th>
<th>Duration</th>
<th>Cycle offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-12-0122</td>
<td>6 CP</td>
<td>180 h</td>
<td>0 h</td>
<td>1</td>
<td>Every Sem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>M.A. Britta Friedmann</td>
</tr>
</tbody>
</table>

1. **Content**

2. **Learning objectives / Learning Outcomes**

3. **Recommended prerequisite for participation**

4. **Form of examination**

 Module Accompanying Examination:

 - [41-12-0120-ku] (Study Achievement, Study Achievement, Duration: 90 min, Standard BWS)

5. **Grading**

 Module Accompanying Examination:

 - [41-12-0120-ku] (Study Achievement, Study Achievement, Weighting: 100 %)

6. **Usability of this module**

7. **Grade bonus compliant to §25 (2)**

8. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type Course</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-12-0120-ku</td>
<td>German Intensive Basic Course II/III</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Module name</td>
<td>German Intensive Basic Course IV/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Nr.</td>
<td>41-12-0132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit Points</td>
<td>6 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self study</td>
<td>0 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle offered</td>
<td>Every Sem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>M.A. Britta Friedmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Content**

2. **Learning objectives / Learning Outcomes**

3. **Recommended prerequisite for participation**

4. **Form of examination**
 Module Eccompanying Examination:
 - [41-12-0130-ku] (Study Achievement, Study Archievment, Duration: 90 min, Standard BWS)

5. **Grading**
 Module Eccompanying Examination:
 - [41-12-0130-ku] (Study Achievement, Study Archievment, Weighting: 100%)

6. **Usability of this module**

7. **Grade bonus compliant to §25 (2)**

8. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type Course</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-12-0130-ku</td>
<td>German Intensive Basic Course IV/V</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

4.2 Languages
4.3 Miscellaneous

All modules for this areas are listed in the external module manual “Studium Generale”.