Prof. Dr. Bodo Laube

Contact

work +49 6151 16-20970

Work B1|01 290
Schnittspahnstrasse 10
64287 Darmstadt

Links

In the Neurophysiology and Neurosensory System group we design selective detectors with new sensor and switching properties for the specific integration and calculation of extracellular signals in combination with downstream genetic control loops. By combining the different switching properties of ionotropic and metabotropic receptor domains with the ligand selectivity of substrate binding proteins (SBPs), we focus on a new modular strategy for the targeted coupling of selective sensor domains to specific intracellular signal cascades in the form of synthetic bio-sensors. SBPs are characterized by a broad but highly selective ligand spectrum (amino acids, peptides, saccharides, phosphonates, opines, metal ions, trigonal planar ions, vitamins, fatty acids and a multitude of complex organic compounds) with a high specificity and affinity down to the subnanomolar range. Therefore, SBPs will be adapted and integrated to the molecular function of ionotropic and metabotropic receptor signaling by rational modification. This range of robust biosensors for insertion into synthetic hybrid circuits enables a new quality of integration and processing of sensory signals at the cellular level. Furthermore, the interaction with DNA domains will be investigated by coupling SBPs to specific DNA binding proteins in order to enable the conceptual control of cellular processes on the transcriptional level and a functional extension of rationally designed biological switches. Finally, our findings will be transferred to the understanding of bi-directional neuronal plasticity mechanisms, e.g. in the context of learning and memory processes, which require the processing of various extracellular information for the specific controlled regulation of de novo gene expression in the cell nucleus.