- Ibs, I., Ott, C., Jäkel, F., and Rothkopf, C. A. (2024). From Human Explanations to Explainable AI: Insights from Constrained Optimization. Cognitive Systems Research. [In press].
- Ott, C. and Jäkel, F. (2024). SimplifEx: Simplifying and Explaining Linear Programs. Cognitive Systems Research. [In press].
- Thomas, T., Straub, D., Tatai, F., Shene, M., Tosik, T., Kersting, K., & Rothkopf, C. (2024). Modeling dataset bias in machine-learned theories of economic decision making. (external) pdf
Nature Human Behaviour. - Zečević, M., Dhami, D.S., & Kersting, K. (2024). Structural Causal Models Reveal Confounder Bias in Linear Program Modelling. (opens in new tab) (external) pdf
Machine Learning Journal (MLJ).
- Brack, M., Schramowski, P., Deiseroth, B., & Kersting, K. (2023). ILLUME: Rationalizing Vision-Language Models through Human Interactions. (opens in new tab) (external) pdf
In Proceedings of the 40th International Conference on Machine Learning (ICML). - Dill, S., Li, S.Z., Rohr, M., Sharbafi, M., & Antink, C.H. (2023). Automatic Generation of Labeled Data for Video-Based Human Pose Analysis via NLP applied to YouTube Subtitles. (external) pdf
45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), doi: 10.1109/EMBC40787.2023.10340044. - Friedrich, F., Stammer, W., Schramowski, P., Kersting, K. (2023). A typology for exploring the mitigation of shortcut behaviour. (external) pdf
Nature Machine Intelligence 5:319-330. - Hesse, R., Schaub-Meyer, S., & Roth, S (2023). Content-Adaptive Downsampling in Convolutional Neural Networks. (opens in new tab) (external) pdf
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2023, pp. 4544-4553 - Kadner, F., Thomas, T., Hoppe, D., Rothkopf, C. A. (2023). Improving saliency models’ predictions of the next fixation with humans’ intrinsic cost of gaze shifts. (opens in new tab) (external) pdf
Proceedings of 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) - Scholl, P., Firouzi, V., Karimi, M.T., Seyfarth, A., Sharbafi, M.A.(2023). Virtual Pivot Point Model Predicts Instability in Parkinsonian Gaits. (external) pdf
2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 5261-5266, doi: 10.1109/SMC53992.2023.10394155. - Schramowski, P., Brack, M., Deiseroth, B., & Kersting, K. (2023). Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models. (opens in new tab) (external) pdf
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). - Schultze, S., Withöft, A., Abdenebaoui, L., & Boll, S. (2023). Explaining Image Aesthetics Assessment: An Interactive Approach. (external) pdf
In Proceedings of the 2023 ACM International Conference on Multimedia Retrieval (ICMR '23). - Sidheekh, S., Kersting, K., & Natarajan, S. (2023). Probabilistic Flow Circuits: Towards Unified Deep Models for Tractable Probabilistic Inference. (opens in new tab) (external) pdf
In Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI). - Skryagin, A., Ochs, D., Dhami, D.S., & Kersting, K. (2023). Scalable Neural-Probabilistic Answer Set Programming. (external) pdf
Journal of Artificial Intelligence Research (JAIR) 78:579–617. - Straub, D., Schultheis, M., Koeppl, H., & Rothkopf, C. A. (2023). Probabilistic inverse optimal control for non-linear partially observable systems disentangles perceptual uncertainty and behavioral costs. (opens in new tab) (external) pdf
In Advances in Neural Information Processing Systems (NeurIPS 2023), 36. - Ventola, F., Braun, S., Yu, Z., Mundt, M., & Kersting, K. (2023). Probabilistic Circuits That Know What They Don't Know. (opens in new tab) (external) pdf
In Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI). - Willig, M., Zečević, M., Dhami, D.S., & Kersting, K. (2023). Do Not Marginalize Mechanisms, Rather Consolidate!. (external) pdf
In Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS). - Yu, Z., Trapp, M., & Kersting, K. (2023). Characteristic Circuits. (external) pdf
In Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS). - Zečević, M., Dhami, D.S., Kersting, K. (2023). Not All Causal Inference is the Same. (external) pdf
Transactions on Machine Learning Research (TMLR). - Zečević, M., Willig, M., Dhami, D.S., & Kersting, K. (2023). Causal Parrots. Large Language Models May Talk Causality But Are Not Causal. (external) pdf
Transactions on Machine Learning Research (TMLR).