Erkenntnisgewinn durch Vereinfachung
Forscher der TU Darmstadt untersuchen „starke Kernkraft“
02.06.2017 von König/Hammer/sip
Die „starke Kernkraft“ spielt eine entscheidende Rolle für die Existenz der Materie im sichtbaren Universum. Was diese Kraft ausmacht, ist Gegenstand einer Forschungsarbeit an der TU Darmstadt, die jetzt in den „Physical Review Letters“ veröffentlicht wurde. Zur Beschreibung der Vorgänge im Atomkern nutzten die Physiker eine theoretische Vereinfachung, die sich möglicherweise auch auf schwerere Kerne übertragen lässt.

Die jüngst veröffentlichte Forschung befasst sich mit der sogenannten „starken Kernkraft“. Sie spielt eine entscheidende Rolle für die Existenz der Materie im sichtbaren Universum. Wie genau dieser Mechanismus, fundamental beschrieben durch die Quantenchromodynamik als Wechselwirkung zwischen den isoliert nicht beobachtbaren Quarks und Gluonen, die Kraft hervorbringt, die Protonen und Neutronen in Atomkernen bindet, ist Gegenstand der aktuellen Forschung.
Dafür nutzten die Wissenschaftler ein wichtiges Konzept in der theoretischen Physik: effektive Feldtheorien. Vereinfacht gesagt, brechen solche Theorien mikroskopische Details auf ihren wesentlichen Inhalt herunter, indem sie den mathematischen Formalismus auf den gewünschten Detailgrad anpassen. Dieser Ansatz kann als Wahl einer geeigneten „theoretischen Auflösung“ interpretiert werden. Dies ist vergleichbar mit der Wahl größerer Pixelgrößen für aus der Ferne betrachtete Großbildschirme als für kleine Smartphones, um den gleichen visuellen Eindruck zu erreichen.
Die Betrachtung aus der Distanz ermöglicht es außerdem, größere Zusammenhänge zu sehen. In diesem Fall ist das die Beschreibung von Kernen basierend auf einem einfachen aber mächtigen Prinzip: Im sogenannten „Unitaritätslimes“ zeigen Systeme von Protonen und Neutronen universelles Verhalten, welches sie mit scheinbar sehr unterschiedlichen Teilchen, wie zum Beispiel Atomen in ultrakalten Gasen, teilen.
In diesem Grenzfall werden die physikalischen Eigenschaften der beobachteten Zustände durch einen einzigen Parameter bestimmt, der die Wechselwirkung dreier Teilchen charakterisiert. Die Wissenschaftler zeigen, dass Atomkerne aus bis zu vier Teilchen (zum Beispiel Helium) in diesem Grenzfall in guter Näherung beschrieben werden. Weiterhin ist es möglich, die theoretische Auflösung durch eine Folge von Korrekturen zu erhöhen. Auf diese Weise erhält man eine gute Beschreibung der experimentellen Bindungsenergien basierend auf einer kleinen Zahl experimenteller Daten.
Die beteiligten Wissenschaftler vermuten, dass sich dieser Ansatz auch auf schwerere Kerne ausdehnen lässt.
Hintergrund
An der Veröffentlichung waren neben im Rahmen einer internationalen Kollaboration auch Wissenschaftler der Forschern der Technischen Universität Darmstadt sowie der George Washington University und der Université Paris-Sud beteiligt. University of Arizona
Die Veröffentlichung
Der Aufsatz „Nuclear Physics Around the Unitarity Limit“ ist erschienen in den „Physical Review Letters“, Vol. 118, Issue 20 (), und wurde als „Editors’ Suggestion“ hervorgehoben. DOI: 10.1103/PhysRevLett.118.202501