Von Schwerionen- und Neutronenstern-Kollisionen zum Urknall

Sonderforschungsbereich-Transregio 211 wird für weitere vier Jahre gefördert

25.05.2021

Der Sonderforschungsbereich-Transregio „Stark-wechselwirkende Materie unter extremen Bedingungen“, eine gemeinsame Initiative der Technischen Universität Darmstadt, der Goethe-Universität Frankfurt und der Universität Bielefeld, untersucht seit Juli 2017 die extremsten Zustände der im Universum vorgefundenen Materie. Nun fördert die Deutsche Forschungsgemeinschaft (DFG) diesen Forschungsverbund (SFB-TRR 211) für weitere vier Jahre mit 8,9 Millionen Euro. Neuer Sprecher ist Professor Guy Moore, Kernphysiker an der TU Darmstadt. Er übernimmt diese Funktion von Professor Dirk Rischke, der an der Goethe- Universität Frankfurt forscht und lehrt. Der Transregio stärkt auch die Forschungskooperation in der Strategischen Allianz der Rhein-Main-Universitäten (RMU), welche die Goethe-Universität Frankfurt, die TU Darmstadt und die Johannes Gutenberg-Universität Mainz bilden.

Der SFB-TR 211 erforscht die Kollision von Schwerionen und Neutronensternen unter extremen Bedigungen. Das Simulationsbild zeigt die Dichte von zwei Neutronensternen, die miteinander verschmolzen sind.

Was passiert, wenn man normale Materie so stark komprimiert oder aufheizt, dass sich die Atomkerne überlappen und miteinander verschmelzen? Die Materie geht dann in einen neuen Zustand über, dessen Eigenschaften von der „starken Wechselwirkung“ bestimmt werden, also der Kraft, welche die Protonen und Neutronen im Atomkern aneinander kettet. Diese starke Wechselwirkung sorgt insbesondere auch für die Bindung zwischen den inneren Bausteinen der Protonen und Neutronen – den Quarks und Gluonen – und diese fundamentalen Bausteine markieren letztlich auch die Eigenschaften der Materie unter äußerst extremen Bedingungen.

Solche jegliche Grenzen sprengenden Umgebungseinflüsse – etwa Temperaturen über eine Billion Grad und Dichten von mehr als einhundert Millionen Tonnen pro Kubikzentimeter, das sind um viele Potenzen höhere Werte als im Zentrum der Sonne – werden in Schwerionen-Stößen erreicht, die gegenwärtig am „Relativistic Heavy Ion Collider“ (RHIC) in New York, am „Large Hadron Collider“ (LHC) am CERN in Genf sowie in naher Zukunft an der Beschleunigeranlage FAIR in Darmstadt experimentell untersucht werden. Darüber hinaus herrschen solche Bedingungen auch bei Zusammenstößen und der Verschmelzung von Neutronensternen, die zu den gewaltigsten astrophysikalischen Ereignissen zählen und 2017 erstmals durch die Messung von Gravitationswellen nachgewiesen wurden. Ähnliche Bedingungen gab es auch in den ersten 10 Mikrosekunden nach dem Urknall und haben deshalb Auswirkungen auf die heutige Struktur und den Inhalt des Universums.

Gründe genug also, die theoretische Basis stark-wechselwirkender Materie intensiver zu erforschen und ihr Verhalten in Experimenten, Astrophysik und Kosmologie vorherzusagen. Das geschieht im SFB-TRR 211, einer Kooperation von 24 Projektleitern und -leiterinnen und ihren Arbeitsgruppen, insgesamt sind mehr als 100 Forschende in 13 Teilprojekten beteiligt. In groß angelegten numerischen Simulationen auf Supercomputern sichern sie im Rahmen der so genannten Gitter-Eichtheorie sowie in analytischen Zugängen zur Theorie der starken Wechselwirkung die Fundamente für ein vertieftes Verständnis ab. Zugleich verbinden sie die theoretischen Fortschritte mit spezifischen experimentellen und astrophysikalischen Effekten. Diese kombinierte Expertise der Wissenschaftler und Wissenschaftlerinnen aus den drei Partner-Universitäten ist weltweit einzigartig.

Der neue Sprecher des TRR 211, Professor Guy Moore, sagt: „Wir sind begeistert, dass die DFG unsere Expertise und die harte Arbeit der letzten Jahre anerkannt hat und freuen uns darauf, unsere Forschung bis Mitte 2025 – und perspektivisch hoffentlich auch in einer dritten Förderperiode – fortsetzen zu können."

TRR 211/feu