Maßgeschneiderte Wirkstoffe aus DNA-Nanopartikeln

Veröffentlichung in „ChemBioChem“ / Forschende stellen neue Grundlagentechnologie vor

28.09.2022

Maßgeschneiderte Medikamente aus DNA-Nanopartikeln: Wissenschaftlerinnen und Wissenschaftler der TU Darmstadt haben gezeigt, dass eine neue Klasse synthetischer Wirkstoffe sich gezielt auf die Schwachstellen eines Krankheitserregers hin ausrichten lässt und diesen wirkungsvoll zerstört. Die Ergebnisse ihrer Forschungen veröffentlichten sie jetzt im Journal „ChemBioChem“.

Links: Rasterkraftmikroskopische (AFM)-Aufnahme von Trypanosomen-spezifischen DNA-Nanopartikeln auf einer Glimmer-Oberfläche. Mitte: Moleküldarstellung eines einzelnen DNA-Nanopartikels, die den „core-shell“-Aufbau der Partikel verdeutlicht. Blau: DNA-Moleküle in der äusseren Hülle. Rot: Cholesterol-Moleküle im Kern. Rechts: Moleküldarstellung eines einzelnen DNA-Lipid Moleküls bestehend aus einem Cholestrol-Molekül (rot) als Membranlipid und einem DNA-Molekül (blau) mit enzymatischer Aktivität (DNAzyme).

Am Fachbereich Biologie der TU Darmstadt wird seit langem intensiv an innovativen Methoden geforscht, mit denen sich neue Therapeutika zur Bekämpfung von Infektionskrankheiten herstellen lassen. Die große Bedeutung dieser Disziplin ist während der SARS-CoV2-Pandemie erneutmehr als deutlich geworden. Der Arbeitskreis von Professor H. Ulrich Göringer am Fachgebiet Molekulare Genetik hat nun eine neue Publikation auf diesem Forschungsgebiet vorgelegt. Im Aufsatz „Core-Shell DNACholesterol Nanoparticles Exert Lysosomolytic Activity in African Trypanosomes“ berichten die Wissenschaftlerinnen und Wissenschaftler über einen innovativen Ansatz zum Design synthetischer Wirkstoffe, die gezielt gegen die Schwachstellen eines Krankheitserregers ausgerichtet werden können.

Es handelt sich dabei um Nanopartikel, also Teilchen mit einer Größe von wenigen Nanometern, in denen ein Kern aus Membranlipiden von einer Hülle aus DNA-Molekülen umgeben ist. Während die Lipidmoleküle eine generelle, membranzerstörende Wirkung auf den Krankheitserreger ausüben, kann die DNA-Hülle so „programmiert“ werden, dass ein zweites biochemisches Ziel (target) des Krankheitserregers attackiert wird. Gegen die im tropischen Afrika vorkommenden Schlafkrankheit konstruierten die Autorinnen und Autoren ein derartiges DNA-Lipid-Nanopartikel quasi am Reißbrett, synthetisierten es und zeigten, wie es den infektiösen Parasiten zielgerichtet im Laufe weniger Stunden zerstört. Die Nanopartikel entfalten ihre Toxizität gegenüber dem Schlafkrankheitserreger bereits in sehr kleiner Menge, nämlich in einem Konzentrationsbereich, der eine Größenordnung unterhalb der wirksamen Konzentration bereits bekannter Wirkstoffe liegt.

Design lässt sich auf andere Krankheiten anpassen

Die vom Arbeitskreis synthetisierten Partikel bestehen aus kurzen DNA- und Cholesterol-Molekülen – beides biogene, also in der Natur vorkommende, ungiftige (atoxische) Verbindungen. Das hier vorgestellte Design der DNA-Nanopartikel lässt sich auch auf andere Infektionskrankheiten anpassen. Die Technologie könnte so zur Grundlage für eine Anwendung in der Pharmaindustrie werden.

Das Forschungsprojekt wendet konsequent synthetisch-biologische Prinzipien des Wirkstoffdesigns an und reiht sich damit in den Forschungsschwerpunkt des Centre for Synthetic Biology an der TU Darmstadt ein. Die Arbeit der Erstautoren Dr. Robert Knieß und Dr. Matthias Leeder erschien im Fachjournal ChemBioChem und enthält unter anderem auch Ergebnisse der Bachelorstudierenden Paul Reißig und Felix Geyer an der TU Darmstadt. Das Projekt wurde durch die Dr. Illing-Stiftung für Makromolekulare Chemie gefördert.

Hintergrund

Die Synthetische Biologie gilt als die Ingenieurwissenschaft der Biowissenschaften. Sie vereinigt das Wissen unterschiedlicher Fachdisziplinen, darunter die Systembiologie, Gentechnik, Informationstheorie und Nanotechnologie. Sie verfolgt das Ziel neuartige, in der Natur nicht vorkommende (Bio)moleküle und genetische wie metabolische Schaltkreise zu bauen. Dies geschieht unter Anwendung ingenieurswissenschaftlicher Prinzipien wie zum Beispiel dem modularen Design und der Konstruktion von Prototypen sowie der Optimierung und Standardisierung aller involvierten Komponenten und Prozessschritte.

sip