Die Inhalte dieser Seite sind nur auf Englisch verfügbar.
Zur englischen Version dieser Seite wechseln

Optimierte Magnete für die Energiewende

Europäischer Innovationsrat fördert europaweites Projekt unter Leitung der TU Darmstadt

31.05.2023

Magnete sind Schlüsselmaterialien für die Energiewende. Oft bestehen sie jedoch aus kritischen Rohstoffen. Wissenschaftlerinnen und Wissenschaftler unter der Leitung der TU Darmstadt forschen nun im Rahmen des Projekts „CoCoMag“ an alternativen magnetischen Materialien. Der Europäische Innovationsrat (EIC) fördert das Vorhaben mit drei Millionen Euro.

Darstellung einer Einheitszelle, die durch ein komplexes Legierungsdesign zusammen mit den entsprechenden magnetischen Eigenschaften entworfen wurde.

Fossile Brennstoffe werden immer mehr durch Strom aus Sonne, Wind und Wasser ersetzt. Eine ausreichende Menge erneuerbarer Energie ist jedoch nur der Ausgangspunkt für die Klimaneutralität. Ein echter Übergang zu einer nachhaltigen Wirtschaft ist nur mit der Elektrifizierung unserer Infrastruktur möglich, die in hohem Maße von optimierten und kostengünstigen magnetischen Materialien abhängt – etwa bei der Nutzung von Windkraftanlagen, Elektromobilität oder auch bei der magnetischen Kühlung als Alternative zur konventionellen Gaskompressionskühlung.

Die besten Magnete werden bisher unter Nutzung von Seltenen Erden und damit auf absehbare Zeit begrenzt verfügbaren Rohstoffen hergestellt. Dabei ist die Europäische Union bei 14 von 27 entscheidenden Rohstoffen zu 100 Prozent von ausländischen Lieferanten abhängig. Der Europäische Innovationsrat unterstützt nun ein europaweites Forschungsprojekt zu neuen magnetischen Materialien, die ohne diese kritischen Rohstoffe auskommen. So werden wirtschaftliche Abhängigkeiten vermieden und die Herstellung von Magneten wird kostengünstiger, da nur gut verfügbare Rohstoffe genutzt werden.

Bessere Magnete unabhängig von Seltenen Erden und Kobalt

„Ziel des Projekts ist die Synthese, Herstellung und Erprobung neuer Legierungen, die sich für Dauermagnete und magnetokalorische Anwendungen eignen, ohne dass Seltene Erden und Kobalt verwendet werden“, erklärt Oliver Gutfleisch, Professor für Funktionswerkstoffe am Fachbereich Material- und Geowissenschaften der Technischen Universität Darmstadt und Koordinator des neuen Projekts. „Dieser Schritt ist entscheidend, um die Elektrifizierung unserer Infrastrukturen zu beschleunigen.“

Herkömmliche Legierungen bestehen traditionell aus ein bis zwei Hauptelementen und mehreren anderen Elementen in geringen Mengen. Das Forschungsteam hat nun ein neues Designkonzept für Magnete entwickelt: „Unsere Legierungen bestehen aus mehreren Hauptelementen in relativ hohen Konzentrationen, im Fachjargon als Hochentropielegierungen bezeichnet. Dadurch können die Eigenschaften der einzelnen Elemente voll ausgenutzt werden, wodurch die neuen Magnete nicht nur nachhaltiger, sondern auch besser formbar und korrosionsbeständig sein werden“, sagt Dr. Liuliu Han, Projektleiter am Max-Planck-Institut für Eisenforschung, welches auch Projektpartner ist.

Projekt CoCoMag

Das Projekt CoCoMag (Multi-property Compositionally Complex Magnets for Advanced Energy Applications) wird von der EU-Förderlinie „Pathfinder Open“ unterstützt, mit der radikal neue Technologien identifiziert werden sollen, die das Potenzial haben, ganz neue Märkte zu schaffen. Dazu werden visionäre und risikoreiche Projekte in einem frühen Entwicklungsstadium gefördert.

An CoCoMag sind neben der TU Darmstadt und dem Düsseldorfer Max-Planck-Institut für Eisenforschung (MPIE) auch die Chalmers University of Technologies (Schweden), die Donau-Universität Krems (Österreich) und die Universität Sevilla (Spanien) sowie Unternehmen aus Deutschland (MagnoTherm Solutions GmbH, eine Ausgründung der TU Darmstadt), Italien (New Ideas 4.0) und Griechenland (AMEN New Technologies) beteiligt. Das jetzt bewilligte Projekt ebnet den Weg für einen bahnbrechenden Wandel in den Bereichen Elektromobilität und Kühlung, die derzeit auf Seltene Erden und Kobalt angewiesen sind. Neue innovative Magnete, die aus komplex zusammengesetzten Legierungen hergestellt werden, werden kostengünstiger sein, den ökologischen Fußabdruck verringern und die notwendigen Eigenschaften optimieren.