Warum manche Blasen mehr Tempo machen

Teams von TU Darmstadt und TU Graz erforschen Bewegung in viskoelastischen Flüssigkeiten

03.03.2022

Warum bewegen sich große Gasblasen in viskoelastischen Flüssigkeiten (etwa Polymer- und Proteinlösungen) so viel schneller als erwartet? Eine offene Frage mit großer Relevanz für industrielle Produktionsprozesse. Forschende der TU Darmstadt und der TU Graz haben nun eine Erklärung gefunden und im „Journal of Non-Newtonian Fluid Mechanics“ publiziert.

Schematische Darstellung zweier aufsteigenden Blasen in einer viskoelastischen Flüssigkeit, links im unterkritischen Zustand und rechts im überkritischen Zustand.

Es ist ein unter Fachleuten lange bekanntes Rätsel, das in vielen industriellen Produktionsprozessen sehr relevant ist: die sprunghaft unterschiedlichen Aufstiegsgeschwindigkeiten von Gasblasen in sogenannten viskoelastischen Flüssigkeiten. Viskoelastische Flüssigkeiten sind Stoffe, die Merkmale flüssiger und elastischer Stoffe in sich vereinen. Ein Beispiel dafür sind viele Haarshampoos: stellt man eine durchsichtige, fast gefüllte Flasche davon auf den Kopf, so sieht man die eingeschlossene Luft als Blase in ungewöhnlicher Form aufsteigen. In vielen Industrieprozessen treten solche Flüssigkeiten als Lösungen von Polymeren auf, die häufig durch Begasung mit Sauerstoff angereichert werden müssen.

Professor Günter Brenn

„Wir wissen seit etwa 60 Jahren, dass die Aufstiegsgeschwindigkeit von Gasblasen in viskoelastischen Flüssigkeiten bei einem kritischen Blasendurchmesser sprunghaft zunimmt. Die Blasen steigen dann plötzlich bis zu zehnmal schneller auf. Das spielt für die kontrollierte Begasung dieser Flüssigkeiten eine fundamentale Rolle. Gleichzeitig war unklar, was diesen sprunghaften Geschwindigkeitsanstieg verursacht“, erläutert Professor Günter Brenn vom Institut für Strömungslehre und Wärmeübertragung der TU Graz.

Mit einer Kombination aus Simulation, Experiment und theoretischen Analysen haben die Teams von Professor Dieter Bothe, Arbeitsgruppe Analysis am Fachbereich Mathematik an der TU Darmstadt, und Günter Brenn an der TU Graz das Rätsel nun gemeinsam gelöst. Sie haben herausgefunden, dass die Wechselwirkung der Polymermoleküle mit der Strömung rund um die Gasblasen zu dem merkwürdigen Geschwindigkeitsverhalten der Blasen führt. Mit diesem Wissen kann nun der Sauerstoffeintrag in diese Lösungen genauer vorausberechnet werden, womit Apparaturen etwa in der Biotechnologie, in der Verfahrenstechnik und in der pharmazeutischen Industrie besser ausgelegt werden können. Ihre Erkenntnisse erläutern die Forscher aktuell im Fachjournal „Journal of Non-Newtonian Fluid Mechanics“.

„Entspannter“ Zustand bevorzugt

Grafische Kurzfassung wesentlicher Erkenntnisse der Forschungsarbeit.

Polymere bestehen aus oft riesengroßen Molekülen, die in komplexer Weise mit der Flüssigkeit, in der sie gelöst sind, interagieren. Diese Wechselwirkung macht eine Flüssigkeit viskoelastisch. Was bedingt nun den sprungartigen Geschwindigkeitsanstieg, den Gasblasen in diesen Flüssigkeiten ab dem kritischen Durchmesser an den Tag legen?

Günter Brenn erläutert die jüngsten Erkenntnisse: „Die Strömung rund um die Blase führt dazu, dass sich dort die gelösten Polymermoleküle verformen. Diesen Zustand mögen die Moleküle nicht besonders. Sie wollen so schnell wie möglich zum entspannten, unverformten Zustand zurückkehren.“ Wenn diese Rückkehr zum entspannten Zustand schneller geht als der Transport der Moleküle bis zum Äquator der Blase, dann bleibt die Blase langsam. Dauert die Rückkehr zur Entspannung hingegen länger als die Reise zum Blasenäquator, dann wird in der Flüssigkeit eine Spannung frei, die die Blase „anschiebt“. Das führt zu einer Selbstverstärkung, da nachfolgende Polymermoleküle nun erst recht bis unterhalb des Äquators kommen, sich dort entspannen und wiederum eine „Schubkraft“ freisetzen.

Professor Dieter Bothe

Neben der hohen Praxisrelevanz dieser Erkenntnis, insbesondere für die oben genannten Anwendungsbereiche, ergeben sich auch Konsequenzen in der Grundlagenforschung. „Es hat sich herausgestellt, dass eine weitere überraschende Eigenschaft des Strömungsfeldes dieser Lösungen diesem von uns gezeigten molekularen Mechanismus zugeordnet werden kann: nämlich der so genannte ,negative Nachlauf‘ der Gasblase“, so Dieter Bothe. Das ist ein Bereich im Strömungsfeld unter der Blase, in dem normalerweise die Flüssigkeit mit kleiner Geschwindigkeit der Blase „hinterherläuft“. Bei den polymeren Flüssigkeiten ist es aber umgekehrt: dort ist die Flüssigkeitsbewegung entgegen der Blasenbewegung orientiert. Diese Flüssigkeitsbewegung kommt durch dieselbe Spannung zustande, die auch die Blase „anschiebt“. Aus diesem Verständnis können sich Möglichkeiten zur Steuerung von Strömungsvorgängen ergeben.

Zum Hintergrund

Professor Dieter Bothe und seine Arbeitsgruppe Mathematisches Modellieren und Analysis gaben den Anstoß zur nun publizierten Untersuchung und führten die numerischen Simulationen sowie mathematische Analysen dafür durch. Ihre Arbeiten zum Thema Transportprozesse an fluiden Grenzflächen sind Teil des Forschungsfeldes „Energy & Environment“ , einem der drei Forschungsfelder der TU Darmstadt.

TU Darmstadt und TU Graz – eine strategische Partnerschaft

Seit 2017 arbeiten die Technischen Universitäten Darmstadt und Graz im Rahmen einer strategischen Partnerschaft auf allen Hochschul-Ebenen zusammen. Beide Hochschulen sind Standorte im Universitäts-Netzwerk Unite!

Die Publikation

On the molecular mechanism behind the bubble rise velocity jump discontinuity in viscoelastic liquids. Dieter Bothe, Matthias Niethammer, Christian Pilz, Günter Brenn. J. Non-Newtonian Fluid Mech. vol. 302 (2022), 104748.

Susanne Filzwieser, TU Graz/sip